Refine
Document Type
- Article (2)
- Book chapter (1)
- ZIB-Report (1)
Is part of the Bibliography
- no (4)
Institute
Gas Network Benchmark Models
(2017)
The simulation of gas transportation networks becomes increasingly more important as its use-cases broadens to more complex applications. Classically, the purpose of the gas network was the transportation of predominantly natural gas from a supplier to the consumer for long-term scheduled volumes. With the rise of renewable energy sources, gas-fired power plants are often chosen to compensate for the fluctuating nature of the renewables, due to their on-demand power generation capability. Such an only short-term plannable supply and demand setting requires sophisticated simulations of the gas network prior to the dispatch to ensure the supply of all customers for a range of possible scenarios and to prevent damages to the
gas network. In this work we describe the modelling of gas networks and present benchmark systems to test implementations and compare new or extended models.
Gas Network Benchmark Models
(2019)
The simulation of gas transportation networks becomes increasingly more important as its use-cases broaden to more complex applications. Classically, the purpose of the gas network was the transportation of predominantly natural gas from a supplier to the consumer for long-term scheduled volumes. With the rise of renewable energy sources, gas-fired power plants are often chosen to compensate for the fluctuating nature of the renewables, due to their on-demand power generation capability. Such an only short-term plannable supply and demand setting requires sophisticated simulations of the gas network prior to the dispatch to ensure the supply of all customers for a range of possible scenarios and to prevent damages to the gas network. In this work we describe the modeling of gas networks and present benchmark systems to test implementations and compare new or extended models.
Research data are crucial in mathematics and all scientific disciplines, as they form the
foundation for empirical evidence, by enabling the validation and reproducibility of scientific findings. Mathematical research data (MathRD) have become vast and complex, and their interdisciplinary potential and abstract nature make them ubiquitous in various scientific fields. The volume of data and the velocity of its creation are rapidly increasing due to advancements in data science and computing power. This complexity extends to other disciplines, resulting in diverse research data and computational models. Thus, proper handling of research data is crucial both within mathematics and for its manifold connections and exchange with other disciplines. The National Research Data Infrastructure (NFDI), funded by the federal and state governments of Germany, consists of discipline-oriented consortia, including the Mathematical Research Data Initiative (MaRDI). MaRDI has been established to develop services, guidelines and outreach measures for all aspects of MathRD, and thus support the mathematical research community. Research data management (RDM) should be an integral component of every scientific project, and is becoming a mandatory component of grants with funding bodies such as the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). At the core of RDM are the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. This document aims to guide mathematicians and researchers from related disciplines who create RDM plans. It highlights the benefits and opportunities of RDM in mathematics and interdisciplinary studies, showcases examples of diverse MathRD, and suggests technical solutions that meet the requirements of funding agencies with specific examples. The document is regularly updated to reflect the latest developments within the mathematical community represented by MaRDI.