Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- no (2)
Institute
Studying neural mechanisms in complementary model organisms from different ecological niches in the same animal class can leverage the comparative brain analysis at the cellular level. To advance such a direction, we developed a unified brain atlas platform and specialized tools that allowed us to quantitatively compare neural structures in two teleost larvae, medaka (Oryzias latipes) and zebrafish (Danio rerio). Leveraging this quantitative approach we found that most brain regions are similar but some subpopulations are unique in each species. Specifically, we confirmed the existence of a clear dorsal pallial region in the telencephalon in medaka lacking in zebrafish. Further, our approach allows for extraction of differentially expressed genes in both species, and for quantitative comparison of neural activity at cellular resolution. The web-based and interactive nature of this atlas platform will facilitate the teleost community’s research and its easy extensibility will encourage contributions to its continuous expansion.
Understanding how neural circuits give rise to behavior requires comprehensive knowledge of neuronal morphology, connectivity, and function. Atlas platforms play a critical role in enabling the visualization, exploration, and dissemination of such information. Here, we present FishExplorer, an interactive and expandable community platform designed to integrate and analyze multimodal brain data from larval zebrafish. FishExplorer supports datasets acquired through light microscopy (LM), electron microscopy (EM), and X-ray imaging, all co-registered within a unified spatial coordinate system which enables seamless comparison of neuronal morphologies and synaptic connections. To further assist circuit analysis, FishExplorer includes a suite of tools for querying and visualizing connectivity at the whole-brain scale. By integrating data from recent large-scale EM reconstructions (presented in companion studies), FishExplorer enables researchers to validate circuit models, explore wiring principles, and generate new hypotheses. As a continuously evolving resource, FishExplorer is designed to facilitate collaborative discovery and serve the growing needs of the teleost neuroscience community.