Refine
Year of publication
Document Type
- ZIB-Report (8)
- Article (6)
- In Proceedings (4)
- Doctoral Thesis (1)
- Master's Thesis (1)
- Poster (1)
- Research data (1)
Language
- English (22)
Is part of the Bibliography
- no (22)
Keywords
- statistical shape and intensity models (5)
- 3d-reconstruction from 2d X-rays (2)
- 3d-reconstruction from 2d Xrays (2)
- Articulated Models, Statistical Shape And Intensity Models, 2D/3D Anatomy Reconstruction, Pelvic Parameters Measurement, Total Hip Arthroplasty (2)
- fracture fixation of the distal femur (2)
- image registration (2)
- osteosynthesis follow-up (2)
- pose estimation (2)
- 3D reconstruction (1)
- Digitally Reconstructed Radiograph (DRR), Anatomy Reconstruction, Statistical Shape and Intensity Model (SSIM), GPU acceleration (1)
Institute
We present an efficient GPU-based method to generate virtual X-ray images from tetrahedral meshes which are
associated with attenuation values. In addition, a novel approach is proposed that performs the model deformation
on the GPU. The tetrahedral grids are derived from volumetric statistical shape and intensity models (SSIMs) and describe anatomical structures. Our research targets at reconstructing 3D anatomical shapes by comparing virtual X-ray images generated using our novel approach with clinical data while varying the shape and density of the SSIM in an optimization process. We assume that a deformed SSIM adequately represents an anatomy of interest when the similarity between the virtual and the clinical X-ray image is maximized. The OpenGL implementation presented here generates accurate (virtual) X-ray images at interactive rates, thus qualifying it for its use in the reconstruction process.
We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g.\ pelvic bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach contributes in orthopedic surgery, where 3D anatomy information needs to be extracted from 2D X-rays to support surgeons in better planning joint replacements.
Background: Fossil ticks are extremely rare, whereby Ixodes succineus Weidner, 1964 from Eocene (ca. 44-49 Ma) Baltic amber is one of the oldest examples of a living hard tick genus (Ixodida: Ixodidae). Previous work suggested it was most closely related to the modern and widespread European sheep tick Ixodes ricinus (Linneaus, 1758).
Results: Restudy using phase contrast synchrotron x-ray tomography yielded images of exceptional quality. These confirm the fossil's referral to Ixodes Latreille, 1795, but the characters resolved here suggest instead affinities with the Asian subgenus Partipalpiger Hoogstraal et al., 1973 and its single living (and medically significant) species Ixodes ovatus Neumann, 1899. We redescribe the amber fossil here as Ixodes (Partipalpiger) succineus.
Conclusions: Our data suggest that Ixodes ricinus is unlikely to be directly derived from Weidner's amber species, but instead reveals that the Partipalpiger lineage was originally more widely distributed across the northern hemisphere. The closeness of Ixodes (P.) succineus to a living vector of a wide range of pathogens offers the potential to correlate its spatial and temporal position (northern Europe, nearly 50 million years ago) with the estimated origination dates of various tick-borne diseases.
We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patientspecific surface of the distal femur based on 2D Xray images. Our goal is to study from clinical data, how the platetobone distance affects bone healing. The patientspecific 3D shape of the femur is, however, seldom recorded for cases of femoral osteosynthesis since this typically requires Computed Tomography (CT), which comes at high cost and radiation dose. Our method instead utilizes two postoperative Xray images to derive the femoral shape and thus can be applied on radiographs that are taken in clinical routine for followup. First, the implant geometry is used as a calibration object to relate the implant and the individual Xray images spatially in a virtual Xray setup. In a second step, the patientspecific femoral shape and pose are reconstructed in the virtual setup by fitting a deformable statistical shape and intensity model (SSIM) to the images. The relative positioning between femur and implant is then assessed in terms of displacement between the reconstructed 3D shape of the femur and the plate. A preliminary evaluation based on 4 cadaver datasets shows that the method derives the platetobone distance with a mean absolute error of less than 1mm and a maximum error of 4.7 mm compared to ground truth from CT. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing.
We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patientspecific surface of the distal femur based on 2D Xray images. Our goal is to study from clinical data, how the platetobone distance affects bone healing. The patientspecific 3D shape of the femur is, however, seldom recorded for cases of femoral osteosynthesis since this typically requires Computed Tomography (CT), which comes at high cost and radiation dose. Our method instead utilizes two postoperative Xray images to derive the femoral shape and thus can be applied on radiographs that are taken in clinical routine for followup. First, the implant geometry is used as a calibration object to relate the implant and the individual Xray images spatially in a virtual Xray setup. In a second step, the patientspecific femoral shape and pose are reconstructed in the virtual setup by fitting a deformable statistical shape and intensity model (SSIM) to the images. The relative positioning between femur and implant is then assessed in terms of displacement between the reconstructed 3D shape of the femur and the plate. A preliminary evaluation based on 4 cadaver datasets shows that the method derives the platetobone distance with a mean absolute error of less than 1mm and a maximum error of 4.7 mm compared to ground truth from CT. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing.
We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient-specific surface of the distal femur based on postoperative 2D radiographs. In a first step, the implant geometry is used as a calibration object to relate the implant and the individual X-ray images spatially in a virtual X-ray setup. Second, the patient- specific femoral shape and pose are reconstructed by fitting a deformable statistical shape and intensity model (SSIM) to the X-rays. The relative positioning between femur and implant is then assessed in terms of the displacement between the reconstructed 3D shape of the femur and the plate. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing and, ultimately, to derive load recommendations after surgery.