### Refine

#### Year of publication

#### Document Type

- ZIB-Report (10)
- Article (5)
- In Proceedings (2)
- Book chapter (1)

#### Keywords

- Mixed Integer Programming (3)
- Ubiquity Generator Framework (2)
- Constraint Integer Programming (1)
- Distributed Memory (1)
- LP solver (1)
- MINLP (1)
- MINLP solver (1)
- MIP (1)
- MIP solver (1)
- MIPLIB (1)

#### Institute

The steel mill slab design problem from the CSPLIB is a combinatorial
optimization problem motivated by an application of the steel industry. It
has been widely studied in the constraint programming community. Several
methods were proposed to solve this problem. A steel mill slab library was
created which contains 380 instances. A closely related binpacking problem
called the multiple knapsack problem with color constraints, originated
from the same industrial problem, was discussed in the integer programming
community. In particular, a simple integer program for this problem has
been given by Forrest et al. The aim of this paper is to bring these
different studies together. Moreover, we adapt the model of Forrest et
al. for the steel mill slab design problem. Using this model and a
state-of-the-art integer program solver all instances of the steel mill
slab library can be solved efficiently to optimality. We improved,
thereby, the solution values of 76 instances compared to previous results.
Finally, we consider a recently introduced variant of the steel mill slab
design problem, where within all solutions which minimize the leftover one
is interested in a solution which requires a minimum number of slabs. For
that variant we introduce two approaches and solve all instances of the
steel mill slab library with this slightly changed objective function to
optimality.

Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early in the solving process and help to solve instances to optimality faster. In this paper, we present a scheme for primal start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved as an LP and the solution is rounded. If the rounded solution did not provide a feasible solution already, a sub-MIP is solved for the neighborhood defined by the variable fixings performed in the first phase. The global structures help to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about three out of five instances and therewith help to improve several performance measures for MIP solvers, including the primal integral and the average solving time.

The steel mill slab design problem from the CSPLIB is a combinatorial optimization problem motivated by an application of the steel industry. It has been widely studied in the constraint programming community. Several methods were proposed to solve this problem. A steel mill slab library was created which contains 380 instances. A closely related binpacking problem called the multiple knapsack problem with color constraints, originated from the same industrial problem, was discussed in the integer programming community. In particular, a simple integer program for this problem has been given by Forrest et al. (INFORMS J Comput 18:129–134, 2006). The aim of this paper is to bring these different studies together. Moreover, we adapt the model of Forrest et al. (INFORMS J Comput 18:129–134, 2006) for the steel mill slab design problem. Using this model and a state-of-the-art integer program solver all instances of the steel mill slab library can be solved efficiently to optimality. We improved, thereby, the solution values of 76 instances compared to previous results (Schaus et al., Constraints 16:125–147, 2010). Finally, we consider a recently introduced variant of the steel mill slab design problem, where within all solutions which minimize the leftover one is interested in a solution which requires a minimum number of slabs. For that variant we introduce two approaches and solve all instances of the steel mill slab library with this slightly changed objective function to optimality.

Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These heuristics follow a large neighborhood search (LNS) approach and use global structures to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. The definition of the neighborhood is done by iteratively fixing variables and propagating these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. The neighborhood is solved as a sub-MIP and solutions are transferred back to the original problem. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about every third instance and therewith help to improve the average solving time.

This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.

Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early and help to reduce the time needed to prove optimality. In this paper, we present a scheme for start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved first as an LP, and then as an auxiliary MIP if the rounded LP solution does not provide a feasible solution already. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about 60 % of the instances and by this, help to improve several performance measures for MIP solvers, including the primal integral and the average solving time.

Recently, parallel computing environments have become significantly popular. In order to obtain the benefit of using parallel computing environments, we have to deploy our programs for these effectively. This paper focuses on a parallelization of SCIP (Solving Constraint Integer Programs), which is a mixed-integer linear programming solver and constraint integer programming framework available in source code. There is a parallel extension of SCIP named ParaSCIP, which parallelizes SCIP on massively parallel distributed memory computing environments. This paper describes FiberSCIP, which is yet another parallel extension of SCIP to utilize multi-threaded parallel computation on shared memory computing environments, and has the following contributions: First, we present the basic concept of having two parallel extensions, and the relationship between them and the parallelization framework provided by UG (Ubiquity Generator), including an implementation of deterministic parallelization. Second, we discuss the difficulties in achieving a good performance that utilizes all resources on an actual computing environment, and the difficulties of performance evaluation of the parallel solvers. Third, we present a way to evaluate the performance of new algorithms and parameter settings of the parallel extensions. Finally, we demonstrate the current performance of FiberSCIP for solving mixed-integer linear programs (MIPs) and mixed-integer nonlinear programs (MINLPs) in parallel.

Cut selection is a subroutine used in all modern mixed-integer linear programming solvers with the goal of selecting a subset of generated cuts that induce optimal solver performance. These solvers have millions of parameter combinations, and so are excellent candidates for parameter tuning. Cut selection scoring rules are usually weighted sums of different measurements, where the weights are parameters. We present a parametric family of mixed-integer linear programs together with infinitely many family-wide valid cuts. Some of these cuts can induce integer optimal solutions directly after being applied, while others fail to do so even if an infinite amount are applied. We show for a specific cut selection rule, that any finite grid search of the parameter space will always miss all parameter values, which select integer optimal inducing cuts in an infinite amount of our problems. We propose a variation on the design of existing graph convolutional neural networks, adapting them to learn cut selection rule parameters. We present a reinforcement learning framework for selecting cuts, and train our design using said framework over MIPLIB 2017. Our framework and design show that adaptive cut selection does substantially improve performance over a diverse set of instances, but that finding a single function describing such a rule is difficult. Code for reproducing all experiments is available at https://github.com/Opt-Mucca/Adaptive-Cutsel-MILP.