### Refine

#### Year of publication

#### Document Type

- ZIB-Report (39)
- Article (38)
- In Collection (9)
- In Proceedings (4)
- Book (3)
- Book chapter (3)
- Report (1)

#### Keywords

- optimal control (14)
- interior point methods in function space (5)
- trajectory storage (4)
- finite elements (3)
- lossy compression (3)
- Newton-CG (2)
- complementarity functions (2)
- compression (2)
- discretization error (2)
- finite element method (2)

#### Institute

- Computational Medicine (97) (remove)

The C++ standard template library has many useful containers for data. The standard library includes two adpators, queue, and stack. The authors have extended this model along the lines of relational database semantics. Sometimes the analogy is striking, and we will point it out occasionally. An adaptor allows the standard algorithms to be used on a subset or modification of the data without having to copy the data elements into a new container. The authors provide many useful adaptors which can be used together to produce interesting views of data in a container.

Statistical methods to design computer experiments usually rely on a Gaussian process (GP) surrogate model, and typically aim at selecting design points (combinations of algorithmic and model parameters) that minimize the average prediction variance, or maximize the prediction accuracy for the hyperparameters of the GP surrogate.
In many applications, experiments have a tunable precision, in the sense that one software parameter controls the tradeoff between accuracy and computing time (e.g., mesh size in FEM simulations or number of Monte-Carlo samples).
We formulate the problem of allocating a budget of computing time over a finite set of candidate points for the goals mentioned above. This is a continuous optimization problem, which is moreover convex whenever the tradeoff function accuracy vs. computing time is concave.
On the other hand, using non-concave weight functions can help to identify sparse designs. In addition, using sparse kernel approximations drastically reduce the cost per iteration of the multiplicative weights updates that can be used to solve this problem.

Temperature-based estimation of time of death (ToD) can be per-
formed either with the help of simple phenomenological models of corpse
cooling or with detailed mechanistic (thermodynamic) heat transfer mod-
els. The latter are much more complex, but allow a higher accuracy of
ToD estimation as in principle all relevant cooling mechanisms can be
taken into account.
The potentially higher accuracy depends on the accuracy of tissue and
environmental parameters as well as on the geometric resolution. We in-
vestigate the impact of parameter variations and geometry representation
on the estimated ToD based on a highly detailed 3D corpse model, that
has been segmented and geometrically reconstructed from a computed to-
mography (CT) data set, differentiating various organs and tissue types.

Temperature-based estimation of time of death (ToD) can be per-
formed either with the help of simple phenomenological models of corpse
cooling or with detailed mechanistic (thermodynamic) heat transfer mod-
els. The latter are much more complex, but allow a higher accuracy of
ToD estimation as in principle all relevant cooling mechanisms can be
taken into account.
The potentially higher accuracy depends on the accuracy of tissue and
environmental parameters as well as on the geometric resolution. We in-
vestigate the impact of parameter variations and geometry representation
on the estimated ToD based on a highly detailed 3D corpse model, that
has been segmented and geometrically reconstructed from a computed to-
mography (CT) data set, differentiating various organs and tissue types.
From that we identify the most crucial parameters to measure or estimate,
and obtain a local uncertainty quantifcation for the ToD.

In several inital value problems with particularly expensive right hand side computation, there is a trade-off between accuracy and computational effort in evaluating the right hand sides. We consider inexact spectral deferred correction (SDC) methods for solving such non-stiff initial value problems. SDC methods are interpreted as fixed point iterations and, due to their corrective iterative nature, allow to exploit the accuracy-work-tradeoff for a reduction of the total computational effort. On one hand we derive an error model bounding the total error in terms of the right hand side evaluation errors. On the other hand, we define work models describing the computational effort in terms of the evaluation accuracy. Combining both, a theoretically optimal tolerance selection is worked out by minimizing the total work subject to achieving the requested tolerance.

In several inital value problems with particularly expensive right hand side evaluation or implicit step computation, there is a trade-off between accuracy and computational effort. We consider inexact spectral deferred correction (SDC) methods for solving such initial value problems. SDC methods are interpreted as fixed point iterations and, due to their corrective iterative nature, allow to exploit the accuracy-work-tradeoff for a reduction of the total computational effort. On one hand we derive error models bounding the total error in terms of the evaluation errors. On the other hand, we define work models describing the computational effort in terms of the evaluation accuracy. Combining both, a theoretically optimal local tolerance selection is worked out by minimizing the total work subject to achieving the requested tolerance. The properties of optimal local tolerances and the predicted efficiency gain compared to simpler heuristics, and a reasonable practical performance, are illustrated on simple numerical examples.

The paper addresses primal interior point method for state constrained PDE optimal control problems. By a Lavrentiev regularization, the state constraint is transformed to a mixed control-state constraint with bounded Lagrange multiplier. Existence and convergence of the central path are established, and linear convergence of a short-step pathfollowing method is shown. The behaviour of the regularizations are demonstrated by numerical examples.

A new approach to the numerical solution of optimal control problems including control and state constraints is presented. Like hybrid methods, the approach aims at combining the advantages of direct and indirect methods. Unlike hybrid methods, however, our method is directly based on interior-point concepts in function space --- realized via an adaptive multilevel scheme applied to the complementarity formulation and numerical continuation along the central path. Existence of the central path and its continuation towards the solution point is analyzed in some theoretical detail. An adaptive stepsize control with respect to the duality gap parameter is worked out in the framework of affine invariant inexact Newton methods. Finally, the performance of a first version of our new type of algorithm is documented by the successful treatment of the well-known intricate windshear problem.

A thorough convergence analysis of the Control Reduced Interior Point Method in function space is performed. This recently proposed method is a primal interior point pathfollowing scheme with the special feature, that the control variable is eliminated from the optimality system. Apart from global linear convergence we show, that this method converges locally almost quadratically, if the optimal solution satisfies a function space analogue to a non-degeneracy condition. In numerical experiments we observe, that a prototype implementation of our method behaves in compliance with our theoretical results.