### Refine

#### Year of publication

#### Document Type

- ZIB-Report (49)
- Article (36)
- In Collection (8)
- In Proceedings (6)
- Book (3)
- Book chapter (2)
- Report (1)

#### Keywords

- optimal control (15)
- interior point methods in function space (5)
- interior point methods (4)
- trajectory storage (4)
- discretization error (3)
- finite elements (3)
- lossy compression (3)
- Newton-CG (2)
- complementarity functions (2)
- compression (2)

#### Institute

- Numerical Mathematics (94)
- Computational Medicine (87)
- Visual Data Analysis (12)
- Therapy Planning (8)
- ZIB Allgemein (7)
- Computational Nano Optics (2)
- Computational Systems biology (2)
- Visual Data Analysis in Science and Engineering (2)
- Distributed Algorithms and Supercomputing (1)
- Mathematical Optimization (1)

A primal interior point method for control constrained optimal control problems with PDE constraints is considered. Pointwise elimination of the control leads to a homotopy in the remaining state and dual variables, which is addressed by a short step pathfollowing method. The algorithm is applied to the continuous, infinite dimensional problem, where discretization is performed only in the innermost loop when solving linear equations. The a priori elimination of the least regular control permits to obtain the required accuracy with comparable coarse meshes. Convergence of the method and discretization errors are studied, and the method is illustrated at two numerical examples.

In the clinical cancer therapy of regional hyperthermia nonlinear perfusion effects inside and outside the tumor seem to play a not negligible role. A stationary model of such effects leads to a nonlinear Helmholtz term within an elliptic boundary value problem. The present paper reports about the application of a recently designed adaptive multilevel FEM to this problem. For several 3D virtual patients, nonlinear versus linear model is studied. Moreover, the numerical efficiency of the new algorithm is compared with a former application of an adaptive FEM to the corresponding instationary model PDE.

In an aging society where the number of joint replacements rises, it is important to also increase the longevity of implants.
In particular hip implants have a lifetime of at most 15 years. This derives primarily from
pain due to implant migration, wear, inflammation, and dislocation, which is affected by
the positioning of the implant during the surgery. Current joint replacement practice uses
2D software tools and relies on the experience of surgeons. Especially the 2D tools fail to
take the patients’ natural range of motion as well as stress distribution in the 3D joint
induced by different daily motions into account.
Optimizing the hip joint implant position for all possible parametrized motions under the
constraint of a contact problem is prohibitively expensive as there are too many motions
and every position change demands a recalculation of the contact problem. For the
reduction of the computational effort, we use adaptive refinement on the parameter
domain coupled with the interpolation method of Kriging. A coarse initial grid is to be
locally refined using goal-oriented error estimation, reducing locally high variances. This
approach will be combined with multi-grid optimization such that numerical errors are
reduced.

The paper presents a particle method framework for resolving molecular dynamics. Error estimators for both the temporal and spatial discretization are advocated and facilitate a fully adaptive propagation. For time integration, the implicit trapezoidal rule is employed, where an explicit predictor enables large time steps. The framework is developed and exemplified in the context of the classical Liouville equation, where Gaussian phase-space packets are used as particles. Simplified variants are discussed shortly, which should prove to be easily implementable in common molecular dynamics codes. A concept is illustrated by numerical examples for one-dimensional dynamics in double well potential.

The paper extends affine conjugate Newton methods from convex to nonconvex minimization, with particular emphasis on PDE problems originating from compressible hyperelasticity. Based on well-known schemes from finite dimensional nonlinear optimization, three different algorithmic variants are worked out in a function space setting, which permits an adaptive multilevel finite element implementation. These algorithms are tested on two well-known 3D test problems and a real-life example from surgical operation planning.

The paper deals with three different Newton algorithms that have recently been worked out in the general frame of affine invariance. Of particular interest is their performance in the numerical solution of discretized boundary value problems (BVPs) for nonlinear partial differential equations (PDEs). Exact Newton methods, where the arising linear systems are solved by direct elimination, and inexact Newton methods, where an inner iteration is used instead, are synoptically presented, both in affine invariant convergence theory and in numerical experiments. The three types of algorithms are: (a) affine covariant (formerly just called affine invariant) Newton algorithms, oriented toward the iterative errors, (b) affine contravariant Newton algorithms, based on iterative residual norms, and (c) affine conjugate Newton algorithms for convex optimization problems and discrete nonlinear elliptic PDEs.