### Refine

#### Year of publication

#### Document Type

- ZIB-Report (22)
- Article (2)
- In Proceedings (1)

#### Is part of the Bibliography

- no (25)

#### Keywords

- operative planning (3)
- KKT recursion (2)
- Multistage Stochastic Programs (2)
- discrete dynamics (2)
- tree-sparse QP (2)
- Buchungsvalidierung (1)
- Chemical Processes (1)
- Convex program (1)
- Drinking water supply (1)
- Entry-Exit Model (1)

#### Institute

- ZIB Allgemein (19)
- Mathematical Optimization (6)

Die mittel- und längerfristige Planung für den Gastransport hat sich durch
Änderungen in den regulatorischen Rahmenbedingungen stark verkompliziert.
Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel
diskutiert die hieraus resultierenden mathematischen Planungsprobleme,
welche als Validierung von Nominierungen und Buchungen, Bestimmung der
technischen Kapazität und Topologieplanung bezeichnet werden. Diese
mathematischen Optimierungsprobleme werden vorgestellt und Lösungsansätze
skizziert.

In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints.
We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously.

In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints.
We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before.

Interior point methods for multistage stochastic programs involve KKT systems with a characteristic global block structure induced by dynamic equations on the scenario tree. We generalize the recursive solution algorithm proposed in an earlier paper so that its linear complexity extends to a refined tree-sparse KKT structure. Then we analyze how the block operations can be specialized to take advantage of problem-specific sparse substructures. Savings of memory and operations for a financial engineering application are discussed in detail.

Mathematical decision support for operative planning in water supply systems is highly desirable but leads to very difficult optimization problems. We propose a nonlinear programming approach that yields practically satisfactory operating schedules in acceptable computing time even for large networks. Based on a carefully designed model supporting gradient-based optimization algorithms, this approach employs a special initialization strategy for convergence acceleration, special minimum up and down time constraints together with pump aggregation to handle switching decisions, and several network reduction techniques for further speed-up. Results for selected application scenarios at Berliner Wasserbetriebe demonstrate the success of the approach.

Mathematical optimization techniques are on their way to becoming a standard tool in chemical process engineering. While such approaches are usually based on deterministic models, uncertainties such as external disturbances play a significant role in many real-life applications. The present article gives an introduction to practical issues of process operation and to basic mathematical concepts required for the explicit treatment of uncertainties by stochastic optimization.

The topic of this paper is minimum cost operative planning of pressurized water supply networks over a finite horizon and under reliable demand forecast. Since this is a very hard problem, it is desirable to employ sophisticated mathematical algorithms, which in turn calls for carefully designed models with suitable properties. The paper develops a nonlinear mixed integer model and a nonlinear programming model with favorable properties for gradient-based optimization methods, based on smooth component models for the network elements. In combination with further nonlinear programming techniques (to be reported elsewhere), practically satisfactory near-optimum solutions even for large networks can be generated in acceptable time using standard optimization software on a PC workstation. Such an optimization system is in operation at Berliner Wasserbetriebe.

Operative planning in gas distribution networks leads to large-scale mixed-integer optimization problems involving a hyperbolic PDE defined on a graph. We consider the NLP obtained under prescribed combinatorial decisions---or as relaxation in a branch and bound framework, addressing in particular the KKT systems arising in primal-dual interior methods. We propose a custom solution algorithm using sparse local projections, based on the KKT systems' structual properties induced by the discretized gas flow equations in combination with the underlying network topology. The numerical efficiency and accuracy of the algorithm are investigated, and detailed computational comparisons with a control space method and with the multifrontal solver MA27 are provided.

The operative planning problem in natural gas distribution networks is addressed. An optimization model focusing on the governing PDE and other nonlinear aspects is presented together with a suitable discretization for transient optimization in large networks by SQP methods. Computational results for a range of related dynamic test problems demonstrate the viability of the approach.