### Refine

#### Year of publication

#### Document Type

- ZIB-Report (34)
- Article (11)
- In Proceedings (11)
- Book chapter (5)
- Book (1)
- In Collection (1)

#### Is part of the Bibliography

- no (63)

#### Keywords

- line planning (6)
- integer programming (5)
- branch-and-cut (4)
- constraint integer programming (4)
- Online Optimization (3)
- Pseudo-Boolean (3)
- Routing (3)
- Telecommunications (3)
- column generation (3)
- computational complexity (3)

In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints.
We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before.

In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints.
We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously.

Die mittel- und längerfristige Planung für den Gastransport hat sich durch
Änderungen in den regulatorischen Rahmenbedingungen stark verkompliziert.
Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel
diskutiert die hieraus resultierenden mathematischen Planungsprobleme,
welche als Validierung von Nominierungen und Buchungen, Bestimmung der
technischen Kapazität und Topologieplanung bezeichnet werden. Diese
mathematischen Optimierungsprobleme werden vorgestellt und Lösungsansätze
skizziert.

We present a branch-and-cut algorithm for the NP-hard maximum feasible subsystem problem: For a given infeasible linear inequality system, determine a feasible subsystem containing as many inequalities as possible. The complementary problem, where one has to remove as few inequalities as possible in order to render the system feasible, can be formulated as a set covering problem. The rows of this formulation correspond to irreducible infeasible subsystems, which can be exponentially many. The main issue of a branch-and-cut algorithm for MaxFS is to efficiently find such infeasible subsystems. We present three heuristics for the corresponding NP-hard separation problem and discuss further cutting planes. This paper contains an extensive computational study of our implementation on a variety of instances arising in a number of applications.

Morse matchings capture the essential structural information of discrete Morse functions. We show that computing optimal Morse matchings is NP-hard and give an integer programming formulation for the problem. Then we present polyhedral results for the corresponding polytope and report on computational results.

The line planning problem is one of the fundamental problems in strategic planning of public and rail transport. It consists in finding lines and corresponding frequencies in a transport network such that a given travel demand can be satisfied. There are (at least) two objectives. The transport company wishes to minimize operating costs, the passengers want to minimize travel times. We propose a n ew multi-commodity flow model for line planning. Its main features, in comparison to existing models, are that the passenger paths can be freely routed and that the lines are generated dynamically. We discuss properties of this model and investigate its complexity. Results with data for the city of Potsdam, Germany, are reported.

In this paper we introduce the fare planning problem for public transport which consists in designing a system of fares maximizing revenue. We propose a new simple general model for this problem. It i s based on a demand function and constraints for the different fares. The constraints define the structure of the fare system, e.g., distance dependent fares or zone fares. We discuss a simple example with a quadratic demand function and distance dependent fares. Then we introduce a more realistic discrete choice model in which passengers choose between different alternatives depending on the numb er of trips per month. We demonstrate the examples by computational experiments.

Can OR methods help the public transport industry to break even? The article gives evidence that there exist significant potentials in this direction, which can be harnessed by a combination of modern mathematical methods and local planning knowledge. Many of the planning steps in public transport are classical combinatorial problems, which can be solved in unprecedented size and quality due the rapid progress in large-scale optimization. Three examples on vehicle scheduling, duty scheduling, and integrated vehicle and duty scheduling illustrate the level that has been reached and the improvements that can be achieved today. Extensions of such methods to further questions of strategic, online, and market-oriented planning are currently investigated. In this way, OR can make a significant contribution to answer the basic but extremely difficult question ``What is a good public transport network?.

The \emph{line planning problem} is one of the fundamental problems in strategic planning of public and rail transport. It consists of finding lines and corresponding frequencies in a public transport network such that a given travel demand can be satisfied. There are (at least) two objectives. The transport company wishes to minimize its operating cost; the passengers request short travel times. We propose two new multi-commodity flow models for line planning. Their main features, in comparison to existing models, are that the passenger paths can be freely routed and that the lines are generated dynamically.