### Refine

#### Year of publication

#### Document Type

- ZIB-Report (17)
- Article (3)

#### Keywords

- sojourn time (5)
- state-dependent processor sharing (4)
- waiting time (3)
- M/GI/m-PS (2)
- busy period (2)
- factorial moments (2)
- freed carried traffic (2)
- impatient customers (2)
- moments (2)
- occupancy distribution (2)

#### Institute

- ZIB Allgemein (12)
- Mathematical Optimization (8)

In this paper for the $M(n)/M(n)/s+GI$ system, i.e.\ for a $s$-server queueing system where the calls in the queue may leave the system due to impatience, we present new asymptotic results for the intensities of calls leaving the system due to impatience and a Markovian system approximation where these results are applied. Furthermore, we present a new proof for the formulae of the conditional density of the virtual waiting time distributions, recently given by Movaghar for the less general $M(n)/M/s+GI$ system. Also we obtain new explicit expressions for refined virtual waiting time characteristics as a byproduct.

We consider a $s$-server system with two FCFS queues, where the arrival rates at the queues and the service rate may depend on the number $n$ of customers being in service or in the first queue, but the service rate is assumed to be constant for $n>s$. The customers in the first queue are impatient. If the offered waiting time exceeds a random maximal waiting time $I$, then the customer leaves the first queue after time $I$. If $I$ is less than a given deterministic time then he leaves the system else he transits to the end of the second queue. The customers in the first queue have priority. The service of a customer from the second queue will be started if the first queue is empty and more than a given number of servers become idle. For the model being a generalization of the $M(n)/M(n)/s\!+\!GI$ system balance conditions for the density of the stationary state process are derived yielding the stability conditions and the probabilities that precisely $n$ customers are in service or in the first queue. For obtaining performance measures for the second queue a system approximation basing on fitting impatience intensities is constructed. The results are applied to the performance analysis of a call center with an integrated voice-mail-server. For an important special case a stochastic decomposition is derived illuminating the connection to the dynamics of the $M(n)/M(n)/s\!+\!GI$ system.

The paper is concerned with the analysis of an $s$ server queueing system in which the calls become impatient and leave the system if their waiting time exceeds their own patience. The individual patience times are assumed to be i.i.d.\ and arbitrary distributed. The arrival and service rate may depend on the number of calls in the system and in service, respectively. For this system, denoted by $M(n)/M(m)/s+GI$, where $m=\min(n,s)$ is the number of busy servers in the system, we derive a system of integral equations for the vector of the residual patience times of the waiting calls and their original maximal patience times. By solving these equations explicitly we get the stability condition and, for the steady state of the system, the occupancy distribution and various waiting time distributions. As an application of the \mbox{$M(n)/M(m)/s+GI$} system we give a performance analysis of an Automatic Call Distributor system (ACD system) of finite capacity with outbound calls and impatient inbound calls, especially in case of patience times being the minimum of constant and exponentially distributed times.

We consider a single server system consisting of $n$ queues with different types of customers (Poisson streams) and $k$ permanent customers. The permanent customers and those at the head of the queues are served in processor-sharing by the service facility (head-of-the-line processor-sharing). The stability condition and a pseudo work conservation law will be given for arbitrary service time distributions; for exponential service times a pseudo conservation law for the mean sojourn times can be derived. In case of two queues and exponential service times, the generating function of the stationary distribution satisfies a functional equation being a Riemann-Hilbert problem which can be reduced to a Dirichlet problem for a circle. The solution yields the mean sojourn times as an elliptic integral, which can be computed numerically very efficiently. In case $n\ge 2$ a numerical algorithm for computing the performance measures is presented, which is efficient for $n=2,3$. Since for $n\ge 4$ an exact analytical or/and numerical treatment is too complex a heuristic approximation for the mean sojourn times of the different types of customers is given, which in case of a (complete) symmetric system is exact. The numerical and simulation results show that, over a wide range of parameters, the approximation works well.

We consider a single server system consisting of $n$ queues with different types of customers and $k$ permanent customers. The permanent customers and those at the head of the queues are served in processor-sharing by the service facility (head-of-the-line processor-sharing). By means of Loynes' monotonicity method a stationary work load process is constructed and using sample path analysis general stability conditions are derived. They allow to decide which queues are stable and moreover to compute the fraction of processor capacity devoted to the permanent customers. In case of a stable system the constructed stationary state process is the only one and for any initial state the system converges pathwise to the steady state.

We deal with an infinite-server system where the
service speed is governed by a stationary and ergodic
process with countably many states. Applying a random
time transformation such that the service speed
becomes one, the sojourn time of a class of virtual
requests with given required service time is equal
in distribution to an additive functional defined
via a stationary version of the time-changed process.
Thus bounds for the expectation of functions of additive
functionals yield bounds for the expectation
of functions of virtual sojourn times, in particular
bounds for fractional moments and the distribution
function. Interpreting the $GI(n)/GI(n)/\infty$ system or
equivalently the $GI(n)/GI$ system under state-dependent
processor sharing as an infinite-server system with
random states given by the number $n$ of requests
in the system provides results for sojourn times
of virtual requests. In case of $M(n)/GI(n)/\infty$,
the sojourn times of arriving and added requests are
equal in distribution to sojourn times of virtual
requests in modified systems, which yields many results
for the sojourn times of arriving and added requests.
In case of integer moments, the bounds generalize
earlier results for $M/GI(n)/\infty$. In particular,
the mean sojourn times of arriving and added requests
in $M(n)/GI(n)/\infty$ are proportional to the required
service time, generalizing Cohen's famous result
for $M/GI(n)/\infty$.

We consider a system with Poisson arrivals and i.i.d. service times. The requests are served according to the state-dependent processor sharing discipline, where each request receives a service capacity which depends on the actual number of requests in the system. The linear systems of PDEs describing the residual and attained sojourn times coincide for this system, which provides time reversibility including sojourn times for this system, and their minimal non negative solution gives the LST of the sojourn time $V(\tau)$ of a request with required service time $\tau$. For the case that the service time distribution is exponential in a neighborhood of zero, we derive a linear system of ODEs, whose minimal non negative solution gives the LST of $V(\tau)$, and which yields linear systems of ODEs for the moments of $V(\tau)$ in the considered neighborhood of zero. Numerical results are presented for the variance of $V(\tau)$. In case of an M/GI/2-PS system, the LST of $V(\tau)$ is given in terms of the solution of a convolution equation in the considered neighborhood of zero. For bounded from below service times, surprisingly simple expressions for the LST and variance of $V(\tau)$ in this neighborhood of zero are derived, which yield in particular the LST and variance of $V(\tau)$ in M/D/2-PS.

We consider a system with Poisson arrivals and general service times, where the requests are served according to the State-Dependent Processor Sharing (SDPS) discipline (Cohen's generalized processor sharing discipline), where each request receives a service capacity which depends on the actual number of requests in the system. For this system, denoted by $M/GI/SDPS$, we derive approximations for the squared coefficients of variation of the conditional sojourn time of a request given its service time and of the unconditional sojourn time by means of two-moment fittings of the service times. The approximations are given in terms of the squared coefficients of variation of the conditional and unconditional sojourn time in related $M/D/SDPS$ and $M/M/SDPS$ systems, respectively. The numerical results presented for $M/GI/m-PS$ systems illustrate that the proposed approximations work well.

We consider a system with Poisson arrivals and i.i.d. service times and where the requests are served according to the state-dependent (Cohen's generalized) processor sharing discipline, where each request in the system receives a service capacity which depends on the actual number of requests in the system. For this system we derive asymptotically tight upper bounds for the moments of the conditional sojourn time of a request with given required service time. The bounds generalize corresponding results, recently given for the single-server processor sharing system by Cheung et al. and for the state-dependent processor sharing system with exponential service times by the authors. Analogous results hold for the waiting times.

For the general G/G/1 processor sharing (PS) system a sample path result for the sojourn times in a busy period is proved, which yields a relation between the sojourn times under PS and FCFS discipline. In particular, the result provides a formula for the mean sojourn time in G/D/1-PS in terms of the mean sojourn time in the corresponding G/D/1-FCFS, generalizing known results for GI/M/1 and M/GI/1. Extensions of the formula provide the basis for a two-moment approximation of the mean sojourn time in G/GI/1-PS in terms of a related G/D/1-FCFS.