Refine
Document Type
- In Proceedings (5)
- Article (2)
Language
- English (7)
Has Fulltext
- no (7)
Is part of the Bibliography
- no (7)
Institute
Scientific visualization and tomographic imaging techniques have created unprecedented possibilities for non-destructive analyses of digital specimens in morphology. However, practitioners encounter difficulties retaining critical information from complex tomographic volumes in their workflows. In light of this challenge, we investigated the effectiveness of visuohaptic integration in enhancing memory retention of morphological data. In a within-subjects user study (N=18), participants completed a delayed match-to-sample task, where we compared error rates and response times across visual and visuohaptic sensory modality conditions. Our results indicate that visuohaptic encoding improves the retention of tomographic images, producing significantly reduced error rates and faster response times than its unimodal visual counterpart. Our findings suggest that integrating haptics into scientific visualization interfaces may support professionals in fields such as morphology, where accurate retention of complex spatial data is essential for efficient analysis and decision-making within virtual environments.
Although Virtual Reality (VR) has undoubtedly improved human interaction with 3D data, users still face difficulties retaining important details of complex digital objects in preparation for physical tasks. To address this issue, we evaluated the potential of visuohaptic integration to improve the memorability of virtual objects in immersive visualizations. In a user study (N=20), participants performed a delayed match-to-sample task where they memorized stimuli of visual, haptic, or visuohaptic encoding conditions. We assessed performance differences between the conditions through error rates and response time. We found that visuohaptic encoding significantly improved memorization accuracy compared to unimodal visual and haptic conditions. Our analysis indicates that integrating haptics into immersive visualizations enhances the memorability of digital objects. We discuss its implications for the optimal encoding design in VR applications that assist professionals who need to memorize and recall virtual objects in their daily work.
Haptic feedback reportedly enhances human interaction with 3D data, particularly improving the retention of mental representations of digital objects in immersive settings. However, the effectiveness of visuohaptic integration in promoting object retention across different display environments remains underexplored. Our study extends previous research on the retention effects of haptics from virtual reality to a projected surface display to assess whether earlier findings generalize to 2D environments. Participants performed a delayed match-to-sample task incorporating visual, haptic, and visuohaptic sensory feedback within a projected surface display environment. We compared error rates and response times across these sensory modalities and display environments. Our results reveal that visuohaptic integration significantly enhances object retention on projected surfaces, benefiting task performance across display environments. Our findings suggest that haptics can improve object retention without requiring fully immersive setups, offering insights for the design of interactive systems that assist professionals who rely on precise mental representations of digital objects.
MorphoHaptics: An Open-Source Tool for Visuohaptic Exploration of Morphological Image Datasets
(2025)
Although digital methods have significantly advanced morphology, practitioners are still challenged to understand and process tomographic data of specimens. As automated processing of fossil data is still insufficient, morphologists still engage in intensive manual work to digitally prepare fossils for research objectives. We present an open-source tool that enables morphologists to explore tomographic data similarly to the physical workflows that traditional fossil preparators experience in the field. Using questionnaires, we assessed the usability of our prototype for virtual fossil preparation and related common tasks in the digital preparation workflow. Our findings indicate that integrating haptics into the virtual preparation workflow enhances the understanding of the morphology and material properties of working specimens and that the visuohaptic sculpting of fossil volumes is straightforward and is an improvement over current digital specimen processing methods.
Fossil preparation is the activity of processing paleontological specimens for research and exhibition purposes. In addition to traditional mechanical extraction of fossils, preparation presently comprises non-destructive digital methods that are part of a relatively new field, namely virtual paleontology. Despite significant technological advances, both traditional and digital preparation remain cumbersome and time-consuming endeavors. However, this field has received scarce attention from a human-computer interaction perspective. The present study aims to elucidate the state-of-the-art for paleontological fossil preparation in order to determine its main challenges and start a conversation regarding opportunities for creating novel designs that tackle the field's current issues. We conducted a qualitative study involving both technical preparators and virtual paleontologists. The study was divided into two parts: First, we assembled technical preparators and paleontology researchers in a focus group session to discuss their workflows, obtain a preliminary understanding of their issues, and ideate solutions based on their counterparts' workflows. Next, we conducted a series of contextual inquiries involving direct observation and semi-structured in-depth interviews. We transcribed our recordings and examined the data through theoretical and inductive thematic analysis, clustering emerging themes and applying concepts from human-computer interaction and related fields. Our findings report on challenges faced by traditional and digital fossil preparators and potential opportunities to improve their tools and workflows. We contribute with a novel analysis of fossil preparation from an HCI perspective.
Virtual paleontology studies digital fossils through data analysis and visualization systems. The discipline is growing in relevance for the evident advantages of non-destructive imaging techniques over traditional paleontological methods, and it has made significant advancements during the last few decades. However, virtual paleontology still faces a number of technological challenges, amongst which are interaction shortcomings of image segmentation applications. Whereas automated segmentation methods are seldom applicable to fossil datasets, manual exploration of these specimens is extremely time-consuming as it impractically delves into three-dimensional data through two-dimensional visualization and interaction means. This paper presents an application that employs virtual reality and haptics to virtual paleontology in order to evolve its interaction paradigms and address some of its limitations. We provide a brief overview of the challenges faced by virtual paleontology practitioners, a description of our immersive virtual paleontology prototype, and the results of a heuristic evaluation of our design.
Manual processing of tomographic data volumes, such as interactive image segmentation in medicine or paleontology, is considered a time-consuming and cumbersome endeavor. Immersive volume sculpting stands as a potential solution to improve its efficiency and intuitiveness. However, current open-source software solutions do not yield the required performance and functionalities. We address this issue by contributing a novel open-source game engine voxel library that supports real-time immersive volume sculpting. Our design leverages GPU instancing, parallel computing, and a chunk-based data structure to optimize collision detection and rendering. We have implemented features that enable fast voxel interaction and improve precision. Our benchmark evaluation indicates that our implementation offers a significant improvement over the state-of-the-art and can render and modify millions of visible voxels while maintaining stable performance for real-time interaction in virtual reality.