### Refine

#### Document Type

- Article (2)
- Doctoral Thesis (1)
- ZIB-Report (1)

#### Keywords

- Adaptive Importance Sampling (1)
- Girsanov (1)
- Metadynamics (1)
- Metastability (1)
- Molecular Dynamics (1)
- Non Equilibrium Sampling (1)
- Variance Reduction (1)

#### Institute

An automatic adaptive importance sampling algorithm for molecular dynamics in reaction coordinates
(2017)

In this article we propose an adaptive importance sampling scheme for dynamical quantities of high dimensional complex systems which are metastable. The main idea of this article is to combine a method coming from Molecular Dynamics Simulation, Metadynamics, with a theorem from stochastic analysis, Girsanov's theorem. The proposed algorithm has two advantages compared to a standard estimator of dynamic quantities: firstly, it is possible to produce estimators with a lower variance and, secondly, we can speed up the sampling. One of the main problems for building importance sampling schemes for metastable systems is to find the metastable region in order to manipulate the potential accordingly. Our method circumvents this problem by using an assimilated version of the Metadynamics algorithm and thus creates a non-equilibrium dynamics which is used to sample the equilibrium quantities.

An automatic adaptive importance sampling algorithm for molecular dynamics in reaction coordinates
(2018)

In recent years, for the analysis of molecular processes, the estimation of time-scales and transition rates has become fundamental. Estimating the transition rates between molecular conformations is—from a mathematical point of view—an invariant subspace projection problem. We present a method to project the infinitesimal generator acting on function space to a low-dimensional rate matrix. This projection can be performed in two steps. First, we discretize the conformational space in a Voronoi tessellation, then the transition rates between adjacent cells is approximated by the geometric average of the Boltzmann weights of the Voronoi cells. This method demonstrates that there is a direct relation between the potential energy surface of molecular structures and the transition rates of conformational changes. We will show also that this approximation is correct and converges to the generator of the Smoluchowski equation in the limit of infinitely small Voronoi cells. We present results for a two dimensional diffusion process and alanine dipeptide as a high-dimensional system.