### Refine

#### Year of publication

#### Document Type

- In Proceedings (84)
- Article (45)
- ZIB-Report (12)
- Research data (6)
- Book chapter (5)
- Doctoral Thesis (1)
- In Collection (1)
- Other (1)

#### Language

- English (155)

#### Is part of the Bibliography

- no (155)

#### Keywords

- transparent boundary conditions (5)
- Maxwell's equations (3)
- domain decomposition (3)
- finite element method (3)
- perfectly matched layer (3)
- pole condition (3)
- Helmholtz equation (2)
- Laplace transform (2)
- PML (2)
- Lithography (1)

#### Institute

Solving time-harmonic scattering problems based on the pole condition: Convergence of the PML method
(2001)

In this paper we study the PML method for Helmholtz-type scattering problems with radially symmetric potential. The PML method consists in surrounding the computational domain by a \textbf{P}erfectly \textbf{M}atched sponge \textbf{L}ayer. We prove that the approximate solution obtained by the PML method converges exponentially fast to the true solution in the computational domain as the thickness of the sponge layer tends to infinity. This is a generalization of results by Lassas and Somersalo based on boundary integral eqaution techniques. Here we use techniques based on the pole condition instead. This makes it possible to treat problems without an explicitly known fundamental solution.

The solution of scattering problems described by the Helmholtz equation on unbounded domains is of importance for a wide variety of applications, for example in electromagnetics and acoustics. An implementation of a solver for scattering problems based on the programming language Matlab is introduced. The solver relies on the finite-element-method and on the perfectly-matched-layer-method, which allows for the simulation of scattering problems on complex geometries surrounded by inhomogeneous exterior domains. This report gives a number of detailed examples and can be understood as a user manual to the freely accessible code of the solver HelmPole.

We present a new efficient algorithm for the solution of direct time-harmonic scattering problems based on the Laplace transform. This method does not rely on an explicit knowledge of a Green function or a series representation of the solution, and it can be used for the solution of problems with radially symmetric potentials and problems with waveguides. The starting point is an alternative characterization of outgoing waves called \emph{pole condition}, which is equivalent to Sommerfeld's radiation condition for problems with radially symmetric potentials. We obtain a new representation formula, which can be used for a numerical evaluation of the exterior field in a postprocessing step. Based on previous theoretical studies, we discuss the numerical realization of our algorithm and compare its performance to the PML method.

In this paper we propose a new finite element realization of the Perfectly Matched Layer method (PML-method). Our approach allows to deal with arbitrary shaped polygonal domains and with certain types of inhomogeneous exterior domains. Among the covered inhomogeneities are open waveguide structures playing an essential role in integrated optics. We give a detailed insight to implementation aspects. Numerical examples show exponential convergence behavior to the exact solution with the thickness of the PML sponge layer.

A new approach to derive transparent boundary conditions (TBCs) for wave, Schrödinger, heat and drift-diffusion equations is presented. It relies on the pole condition and distinguishes between physical reasonable and unreasonable solutions by the location of the singularities of the spatial Laplace transform of the exterior solution. To obtain a numerical algorithm, a Möbius transform is applied to map the Laplace transform onto the unit disc. In the transformed coordinate the solution is expanded into a power series. Finally, equations for the coefficients of the power series are derived. These are coupled to the equation in the interior, and yield transparent boundary conditions. Numerical results are presented in the last section, showing that the error introduced by the new approximate TBCs decays exponentially in the number of coefficients.

We present a domain decomposition approach for the computation of the electromagnetic field within periodic structures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent boundary conditions are approximated by the perfectly matched layer method (PML). To cope with Wood anomalies appearing in periodic structures an adaptive strategy to determine optimal PML parameters is developed. We focus on the application to typical EUV lithography line masks. Light propagation within the multi-layer stack of the EUV mask is treated analytically. This results in a drastic reduction of the computational costs and allows for the simulation of next generation lithography masks on a standard personal computer.

Scattering problems in integrated optics can be modeled in simple cases by the Helmholtz equation. The computational domain is truncated by a non-reflecting boundary condition. We investigate Schwarz algorithms with a sort of DtN operator, realized by the PML-method, at the interfaces of the sub-domains as an iterative solver.

Adaptive Multigrid Methods for the Vectorial Maxwell Eigenvalue Problem for Optical Waveguide Design
(2000)

This paper has been motivated by the need for a fast robust adaptive multigrid method to solve the vectorial Maxwell eigenvalue problem arising from the design of optical chips. Our nonlinear multigrid methods are based on a previous method for the scalar Helmholtz equation, which must be modified to cope with the null space of the Maxwell operator due to the divergence condition. We present two different approaches. First, we present a multigrid algorithm based on an edge element discretization of time-harmonic Maxwell's equations, including the divergence condition. Second, an explicit elimination of longitudinal magnetic components leads to a nodal discretization known to avoid discrete \emph{spurious modes} also and a vectorial eigenvalue problem, for which we present a multigrid solver. Numerical examples show that the edge element discretization clearly outperforms the nodal element approach.

The pole condition is a general concept for the theoretical analysis and the numerical solution of a variety of wave propagation problems. It says that the Laplace transform of the physical solution in radial direction has no poles in the lower complex half-plane. In the present paper we show that for the Helmholtz equation with a radially symmetric potential the pole condition is equivalent to Sommerfeld's radiation condition. Moreover, a new representation formula based on the pole condition is derived and used to prove existence, uniqueness and asymptotic properties of solutions. This lays the foundations of a promising new algorithm to solve time-harmonic scattering problems numerically and provides a new approach for analyzing existing algorithms such as the Perfectly Matched Layer (PML) method and the Bayliss-Gunzburger-Turkel (BGT) algorithm.