Refine
Year of publication
- 2025 (2)
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- no (2)
Institute
A connectomic resource for neural cataloguing and circuit dissection of the larval zebrafish brain
(2025)
We present a correlated light and electron microscopy (CLEM) dataset from a 7-day-old larval zebrafish, integrating confocal imaging of genetically labeled excitatory (vglut2a) and inhibitory (gad1b) neurons with nanometer-resolution serial section EM. The dataset spans the brain and anterior spinal cord, capturing >180,000 segmented soma, >40,000 molecularly annotated neurons, and 30 million synapses, most of which were classified as excitatory, inhibitory, or modulatory. To characterize the directional flow of activity across the brain, we leverage the synaptic and cell body annotations to compute region-wise input and output drive indices at single cell resolution. We illustrate the dataset’s utility by dissecting and validating circuits in three distinct systems: water flow direction encoding in the lateral line, recurrent excitation and contralateral inhibition in a hindbrain motion integrator, and functionally relevant targeted long-range projections from a tegmental excitatory nucleus, demonstrating that this resource enables rigorous hypothesis testing as well as exploratory-driven circuit analysis. The dataset is integrated into an open-access platform optimized to facilitate community reconstruction and discovery efforts throughout the larval zebrafish brain.
Understanding how neural circuits give rise to behavior requires comprehensive knowledge of neuronal morphology, connectivity, and function. Atlas platforms play a critical role in enabling the visualization, exploration, and dissemination of such information. Here, we present FishExplorer, an interactive and expandable community platform designed to integrate and analyze multimodal brain data from larval zebrafish. FishExplorer supports datasets acquired through light microscopy (LM), electron microscopy (EM), and X-ray imaging, all co-registered within a unified spatial coordinate system which enables seamless comparison of neuronal morphologies and synaptic connections. To further assist circuit analysis, FishExplorer includes a suite of tools for querying and visualizing connectivity at the whole-brain scale. By integrating data from recent large-scale EM reconstructions (presented in companion studies), FishExplorer enables researchers to validate circuit models, explore wiring principles, and generate new hypotheses. As a continuously evolving resource, FishExplorer is designed to facilitate collaborative discovery and serve the growing needs of the teleost neuroscience community.