### Refine

#### Year of publication

#### Document Type

- Article (20)
- ZIB-Report (12)
- In Proceedings (4)
- Habilitation (1)

#### Keywords

- Markov State Models (4)
- Markov chain (2)
- Meshfree (2)
- Mixed-Integer Programming (2)
- NESS (2)
- Non-reversible Markov Processes (2)
- Schur decomposition (2)
- Atomistic to Continuum (1)
- Conformation Dynamics (1)
- GenPCCA (1)

#### Institute

Particle methods have become indispensible in conformation dynamics to
compute transition rates in protein folding, binding processes and
molecular design, to mention a few.
Conformation dynamics requires at a decomposition of a molecule's position
space into metastable conformations.
In this paper, we show how this decomposition
can be obtained via the design of either ``soft'' or ``hard''
molecular conformations.
We show, that the soft approach results in a larger metastabilitiy of
the decomposition and is thus more advantegous. This is illustrated
by a simulation of Alanine Dipeptide.

In contrast to the well known meshbased methods like the finite element method, meshfree methods do not rely on a mesh. However besides their great applicability, meshfree methods are rather time consuming. Thus, it seems favorable to combine both methods, by using meshfree methods only in a small part of the domain, where a mesh is disadvantageous, and a meshbased method for the rest of the domain. We motivate, that this coupling between the two simulation techniques can be considered as saddle point problem and show the stability of this coupling. Thereby a novel transfer operator is introduced, which interacts in the transition zone, where both methods coexist.

The rebinding effect is a phenomenon which occurs when observing a ligand-receptor binding process.
On the macro scale this process comprises the Markov property.
This Makovian view is spoiled when switching to the atomistic scale of a binding process.
We therefore suggest a model which accurately describes the rebinding effect on the atomistic scale by allowing ''intermediate'' bound states.
This allows us to define an indicator for the magnitude of rebinding and to formulate an optimization problem.
The results form our examples show good agreement with data form laboratory.

In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to the time scale of interest, i.e., of the whole process. In this setting, the detection of a global cyclic behavior of the process becomes difficult because transitions between individual states may appear almost reversible on the small time scale of the simulation. We address this difficulty using a mixed-integer programming model that allows us to compute a cycle of clusters with maximum net flow, i.e., large forward and small backward probability. For a synthetic genetic regulatory network consisting of a ring-oscillator with three genes, we show that this approach can detect the most productive overall cycle, outperforming classical spectral analysis methods. Our method applies to general non-equilibrium steady state systems such as catalytic reactions, for which the objective value computes the effectiveness of the catalyst.

We introduce a generalized operator for arbitrary stochastic processes by using a pre-kernel, which is a generalization of the Markov kernel. For deterministic processes, such an operator is already known as the Frobenius-Perron operator, which is defined for a large class of measures. For Markov processes, there exists transfer operators being only well defined for stationary measures in $L^2$. Our novel generalized transfer operator is well defined for arbitrary stochastic processes, in particular also for deterministic ones. We can show that this operator is acting on $L^1$. For stationary measures, this operator is also an endomorphism of $L^2$ and, therefore, allows for a mathematical analysis in Hilbert spaces.