### Refine

#### Year of publication

#### Document Type

- Article (8)
- ZIB-Report (4)
- In Proceedings (3)
- Book chapter (1)
- In Collection (1)

#### Language

- English (17)

#### Is part of the Bibliography

- no (17)

#### Keywords

- Differential Geometry (1)
- Discrete Geometry (1)
- Numerical Analysis (1)
- anisotropic smoothing (1)
- curvature smoothing flow (1)
- curve fairing (1)
- curve smoothing (1)
- feature lines (1)
- mesh smoothing (1)
- prescribed mean curvature (1)

#### Institute

We provide conditions for convergence of polyhedral surfaces and their discrete geometric properties to smooth surfaces embedded in Euclidian $3$-space. The notion of totally normal convergence is shown to be equivalent to the convergence of either one of the following: surface area, intrinsic metric, and Laplace-Beltrami operators. We further s how that totally normal convergence implies convergence results for shortest geodesics, mean curvature, and solutions to the Dirichlet problem. This work provides the justification for a discrete theory of differential geometric operators defined on polyhedral surfaces based on a variational formulation.

A new method for noise removal of arbitrary surfaces meshes is presented which focuses on the preservation and sharpening of non-linear geometric features such as curved surface regions and feature lines. Our method uses a prescribed mean curvature flow (PMC) for simplicial surfaces which is based on three new contributions: 1. the definition and efficient calculation of a discrete shape operator and principal curvature properties on simplicial surfaces that is fully consistent with the well-known discrete mean curvature formula, 2. an anisotropic discrete mean curvature vector that combines the advantages of the mean curvature normal with the special anisotropic behaviour along feature lines of a surface, and 3. an anisotropic prescribed mean curvature flow which converges to surfaces with an estimated mean curvature distribution and with preserved non-linear features. Additionally, the PMC flow prevents boundary shrinkage at constrained and free boundary segments.

We present a new algorithm for fairing of space curves with respect spatial constraints based on a vector valued curvature function. Smoothing with the vector valued curvature function is superior to standard Frenet techniques since the individual scalar components can be modeled similar to curvature-based curve smoothing techniques in 2d. This paper describes a curve smoothing flow that satisfies strict spatial constraints and allows simultaneous control of both curvature functions.

We introduce techniques for the processing of motion and animations of non-rigid shapes. The idea is to regard animations of deformable objects as curves in shape space. Then, we use the geometric structure on shape space to transfer concepts from curve processing in R^n to the processing of motion of non-rigid shapes. Following this principle, we introduce a discrete geometric flow for curves in shape space. The flow iteratively replaces every shape with a weighted average shape of a local neighborhood and thereby globally decreases an energy whose minimizers are discrete geodesics in shape space. Based on the flow, we devise a novel smoothing filter for motions and animations of deformable shapes. By shortening the length in shape space of an animation, it systematically regularizes the deformations between consecutive frames of the animation. The scheme can be used for smoothing and noise removal, e.g., for reducing jittering artifacts in motion capture data. We introduce a reduced-order method for the computation of the flow. In addition to being efficient for the smoothing of curves, it is a novel scheme for computing geodesics in shape space. We use the scheme to construct non-linear “Bézier curves” by executing de Casteljau’s algorithm in shape space.

We introduce techniques for the processing of motion and animations of non-rigid shapes. The idea is to regard animations of deformable objects as curves in shape space. Then, we use the geometric structure on shape space to transfer concepts from curve processing in Rn to the processing of motion of non-rigid shapes. Following this principle, we introduce a discrete geometric flow for curves in shape space. The flow iteratively replaces every shape with a weighted average shape of a local neighborhood and thereby globally decreases an energy whose minimizers are discrete geodesics in shape space. Based on the flow, we devise a novel smoothing filter for motions and animations of deformable shapes. By shortening the length in shape space of an animation, it systematically regularizes the deformations between consecutive frames of the animation. The scheme can be used for smoothing and noise removal, e.g., for reducing jittering artifacts in motion capture data. We introduce a reduced-order method for the computation of the flow. In addition to being efficient for the smoothing of curves, it is a novel scheme for computing geodesics in shape space. We use the scheme to construct non-linear Bézier curves by executing de Casteljau's algorithm in shape space.

We introduce a scheme for real-time nonlinear interpolation of a set of shapes. The scheme exploits the structure of the shape interpolation problem, in particular, the fact that the set of all possible interpolated shapes is a low-dimensional object in a high-dimensional shape space. The interpolated shapes are defined as the minimizers of a nonlinear objective functional on the shape space. Our approach is to construct a reduced optimization problem that approximates its unreduced counterpart and can be solved in milliseconds. To achieve this, we restrict the optimization to a low-dimensional subspace that is specifically designed for the shape interpolation problem. The construction of the subspace is based on two components: a formula for the calculation of derivatives of the interpolated shapes and a Krylov-type sequence that combines the derivatives and the Hessian of the objective functional. To make the computational cost for solving the reduced optimization problem independent of the resolution of the example shapes, we combine the dimensional reduction with schemes for the efficient approximation of the reduced nonlinear objective functional and its gradient. In our experiments, we obtain rates of 20-100 interpolated shapes per second even for the largest examples which have 500k vertices per example shape.

We propose a new framework for spacetime optimization that can generate artistic motion with a long planning horizon for complex virtual characters. The scheme can be used for generating general types of motion and neither requires motion capture data nor an initial motion that satisfies the constraints. Our modeling of the spacetime optimization combines linearized dynamics and a novel warping scheme for articulated characters. We show that the optimal motions can be described using a combination of vibration modes, wiggly splines, and our warping scheme. This enables us to restrict the optimization to low-dimensional spaces of explicitly parametrized motions. Thereby the computation of an optimal motion is reduced to a low-dimensional non-linear least squares problem, which can be solved with standard solvers. We show examples of motions created by specifying only a few constraints for positions and velocities.