Refine
Document Type
- Article (8)
- ZIB-Report (5)
- Book chapter (1)
- In Proceedings (1)
- Doctoral Thesis (1)
Language
- English (16)
Keywords
This article is mainly motivated by the urge to answer two kinds of questions regarding the Bundesliga, which is Germany’s primary football (soccer) division having the highest average stadium attendance worldwide: “At any point in the season, what is the lowest final rank a certain team can achieve?” and “At any point in the season, what is the highest final rank a certain team can achieve?”. Although we focus on the Bundesliga in particular, the integer programming formulations we introduce to answer these questions can easily be adapted to a variety of other league systems and tournaments.
In this article we introduce a Minimum Cycle Partition Problem with Length Requirements (CPLR). This generalization of the Travelling Salesman Problem (TSP) originates from routing Unmanned Aerial Vehicles (UAVs). Apart from nonnegative edge weights, CPLR has an individual critical weight value associated with each vertex. A cycle partition, i.e., a vertex disjoint cycle cover, is regarded as a feasible solution if the length of each cycle, which is the sum of the weights of its edges, is not greater than the critical weight of each of its vertices. The goal is to find a feasible partition, which minimizes the number of cycles. In this article, a heuristic algorithm is presented together with a Mixed Integer Programming (MIP) formulation of CPLR. We furthermore introduce a conflict graph, whose cliques yield valid constraints for the MIP model. Finally, we report on computational experiments conducted on TSPLIB-based test instances.
In this paper, we describe an algorithmic framework for the optimal operation of transient gas transport networks consisting of a hierarchical MILP formulation together with a sequential linear programming inspired post-processing routine. Its implementation is part of the KOMPASS decision support system, which is currently used in an industrial setting.
Real-world gas transport networks are controlled by operating complex pipeline intersection areas, which comprise multiple compressor units, regulators, and valves. In the following, we introduce the concept of network stations to model them. Thereby, we represent the technical capabilities of a station by hand-tailored artificial arcs and add them to network. Furthermore, we choose from a predefined set of flow directions for each network station and time step, which determines where the gas enters and leaves the station. Additionally, we have to select a supported simple state, which consists of two subsets of artificial arcs: Arcs that must and arcs that cannot be used. The goal is to determine a stable control of the network satisfying all supplies and demands.
The pipeline intersections, that are represented by the network stations, were initially built centuries ago. Subsequently, due to updates, changes, and extensions, they evolved into highly complex and involved topologies. To extract their basic properties and to model them using computer-readable and optimizable descriptions took several years of effort.
To support the dispatchers in controlling the network, we need to compute a continuously updated list of recommended measures. Our motivation for the model presented here is to make fast decisions on important transient global control parameters, i.e., how to route the flow and where to compress the gas. Detailed continuous and discrete technical control measures realizing them, which take all hardware details into account, are determined in a subsequent step.
In this paper, we present computational results from the KOMPASS project using detailed real-world data.
This study examines the usability of a real-world, large-scale natural gas transport infrastructure for hydrogen transport. We investigate whether a converted network can transport the amounts of hydrogen necessary to satisfy current energy demands. After introducing an optimization model for the robust transient control of hydrogen networks, we conduct computational experiments based on real-world demand scenarios. Using a representative network, we demonstrate that replacing each turbo compressor unit by four parallel hydrogen compressors, each of them comprising multiple serial compression stages, and imposing stricter rules regarding the balancing of in- and outflow suffices to realize transport in a majority of scenarios. However, due to the reduced linepack there is an increased need for technical and non-technical measures leading to a more dynamic network control. Furthermore, the amount of energy needed for compression increases by 364% on average.
In this article, we discuss the Length-Constrained Cycle Partition Problem (LCCP). Besides edge weights, the undirected graph in LCCP features an individual critical weight value for each vertex. A cycle partition, i.e., a vertex disjoint cycle cover, is a feasible solution if the length of each cycle is not greater than the critical weight of each of the vertices in the cycle. The goal is to find a feasible partition with the minimum number of cycles. In this article, we discuss theoretical properties, preprocessing techniques, and two mixed-integer programming models (MIP) for LCCP both inspired by formulations for the closely related Travelling Salesperson Problem (TSP). Further, we introduce conflict hypergraphs, whose cliques yield valid constraints for the MIP models.
We conclude with a report on computational experiments conducted on (A)TSPLIB-based instances. As an example, we use a routing problem in which a fleet of uncrewed aerial vehicles (UAVs) patrols a set of areas.
Consider a flow network, i.e., a directed graph where each arc has a nonnegative capacity value and an associated length, together with nonempty supply intervals for the sources and nonempty demand intervals for the sinks. The Maximum Min-Cost-Flow Problem (MaxMCF) is to find fixed supply and demand values within these intervals such that the optimal objective value of the induced Min-Cost-Flow Problem (MCF) is maximized. In this paper, we show that MaxMCF as well as its uncapacitated variant, the Maximum Transportation Problem (MaxTP), are NP-hard. Further, we prove that MaxMCF is APX-hard if a connectedness-condition regarding the sources and the sinks of the flow network is dropped. Finally, we show how the Minimum Min-Cost-Flow Problem (MinMCF) can be solved in polynomial time.
In the transition towards a pure hydrogen infrastructure, repurposing the existing natural gas infrastructure is considered. In this study, the maximal technically feasible injection of hydrogen into the existing German natural gas transmission network is analysed with respect to regulatory limits regarding the gas quality. We propose a transient tracking model based on the general pooling problem including linepack. The analysis is conducted using real-world hourly gas flow data on a network of about 10,000 km length.
This article discusses the Length-Constrained Cycle Partition Problem (LCCP), which constitutes a new generalization of the Travelling Salesperson Problem (TSP). Apart from nonnegative edge weights, the undirected graph in LCCP features a nonnegative critical length parameter for each vertex. A cycle partition, i.e., a vertex-disjoint cycle cover, is a feasible solution for LCCP if the length of each cycle is not greater than the critical length of each vertex contained in it. The goal is to find a feasible partition having a minimum number of cycles. Besides analyzing theoretical properties and developing preprocessing techniques, we propose an elaborate heuristic algorithm that produces solutions of good quality even for large-size instances. Moreover, we present two exact mixed-integer programming formulations (MIPs) for LCCP, which are inspired by well-known modeling approaches for TSP. Further, we introduce the concept of conflict hypergraphs, whose cliques yield valid constraints for the MIP models. We conclude with a discussion on computational experiments that we conducted using (A)TSPLIB-based problem instances. As a motivating example application, we describe a routing problem where a fleet of uncrewed aerial vehicles (UAVs) must patrol a given set of areas.
Optimizing the transient control of gas networks is a highly challenging task.
The corresponding model incorporates the combinatorial complexity of determining the settings for the many active elements as well as the non-linear and non-convex nature of the physical and technical principles of gas transport.
In this paper, we present the latest improvements of our ongoing work to solve this problem for real-world, large-scale problem instances:
By adjusting our mixed-integer non-linear programming model regarding the gas compression capabilities in the network, we reflect the technical limits of the underlying units more accurately while maintaining a similar overall model size.
In addition, we introduce a new algorithmic approach that is based on splitting the complexity of the problem by first finding assignments for discrete variables and then determining the continuous variables as locally optimal solution of the corresponding non-linear program.
For the first task, we design multiple different heuristics based on concepts for general time-expanded optimization problems that find solutions by solving a sequence of sub-problems defined on reduced time horizons.
To demonstrate the competitiveness of our approach, we test our algorithm on particularly challenging historic demand scenarios.
The results show that high-quality solutions are obtained reliably within short solving times, making the algorithm well-suited to be applied at the core of time-critical industrial applications.