Refine
Document Type
- ZIB-Report (9)
- Article (7)
- In Proceedings (2)
- Book chapter (1)
Language
- English (19)
Is part of the Bibliography
- no (19)
Keywords
In this article we consider the following problem arising in the context of scenario generation to evaluate the transport capacity of gas networks: In the Uncapacitated Maximum Minimum Cost Flow Problem (UMMCF) we are given a flow network where each arc has an associated nonnegative length and infinite capacity. Additionally, for each source and each sink a lower and an upper bound on its supply and demand are known, respectively. The goal is to find values for the supplies and demands respecting these bounds, such that the optimal value of the induced Minimum Cost Flow Problem is maximized, i.e., to determine a scenario with maximum transportmoment. In this article we propose two linear bilevel optimization models for UMMCF, introduce a greedy-style heuristic, and report on our first computational experiment.
Compressor stations are the heart of every high-pressure gas transport network.
Located at intersection areas of the network they are contained in huge complex plants, where they are in combination with valves and regulators responsible for routing and pushing the gas through the network.
Due to their complexity and lack of data compressor stations are usually dealt with in the scientific literature in a highly simplified and idealized manner.
As part of an ongoing project with one of Germany's largest Transmission System Operators to develop a decision support system for their dispatching center, we investigated how to automatize control of compressor stations. Each station has to be in a particular configuration, leading in combination with the other nearby elements to a discrete set of up to 2000 possible feasible operation modes in the intersection area.
Since the desired performance of the station changes over time, the configuration of the station has to adapt.
Our goal is to minimize the necessary changes in the overall operation modes and related elements over time, while fulfilling a preset performance envelope or demand scenario.
This article describes the chosen model and the implemented mixed integer programming based algorithms to tackle this challenge.
By presenting extensive computational results on real world data we demonstrate the performance of our approach.
This article answers two kinds of questions regarding the Bundesliga which is Germany's primary football (soccer) competition having the highest average stadium attendance worldwide. First "At any point of the season, what final rank will a certain team definitely reach?" and second "At any point of the season, what final rank can a certain team at most reach?". Although we focus especially on the Bundesliga, the models that we use to answer the two questions can easily be adopted to league systems that are similar to that of the Bundesliga.
In this paper, we introduce the Maximum Diversity Assortment Selection Problem (MADASS), which is a generalization of the 2-dimensional Cutting Stock Problem (2CSP). Given a set of rectangles and a rectangular container, the goal of 2CSP is to determine a subset of rectangles that can be placed in the container without overlapping, i.e., a feasible assortment, such that a maximum area is covered. In MADASS, we need to determine a set of feasible assortments, each of them covering a certain minimum threshold of the container, such that the diversity among them is maximized. Thereby, diversity is defined as minimum or average normalized Hamming-Distance of all assortment pairs. The MADASS Problem was used in the 11th AIMMS-MOPTA Competition in 2019. The methods we describe in this article and the computational results won the contest.
In the following, we give a definition of the problem, introduce a mathematical model and solution approaches, determine upper bounds on the diversity, and conclude with computational experiments conducted on test instances derived from the 2CSP literature.
This article is mainly motivated by the urge to answer two kinds of questions regarding the Bundesliga, which is Germany’s primary football (soccer) division having the highest average stadium attendance worldwide: “At any point in the season, what is the lowest final rank a certain team can achieve?” and “At any point in the season, what is the highest final rank a certain team can achieve?”. Although we focus on the Bundesliga in particular, the integer programming formulations we introduce to answer these questions can easily be adapted to a variety of other league systems and tournaments.
In this article we introduce a Minimum Cycle Partition Problem with Length Requirements (CPLR). This generalization of the Travelling Salesman Problem (TSP) originates from routing Unmanned Aerial Vehicles (UAVs). Apart from nonnegative edge weights, CPLR has an individual critical weight value associated with each vertex. A cycle partition, i.e., a vertex disjoint cycle cover, is regarded as a feasible solution if the length of each cycle, which is the sum of the weights of its edges, is not greater than the critical weight of each of its vertices. The goal is to find a feasible partition, which minimizes the number of cycles. In this article, a heuristic algorithm is presented together with a Mixed Integer Programming (MIP) formulation of CPLR. We furthermore introduce a conflict graph, whose cliques yield valid constraints for the MIP model. Finally, we report on computational experiments conducted on TSPLIB-based test instances.
In this article, we introduce the Maximum Diversity Assortment Selection Problem (MDASP), which is a generalization of the two-dimensional Knapsack Problem (2D-KP). Given a set of rectangles and a rectangular container, the goal of 2D-KP is to determine a subset of rectangles that can be placed in the container without overlapping, i.e., a feasible assortment, such that a maximum area is covered. MDASP is to determine a set of feasible assortments, each of them covering a certain minimum threshold of the container, such that the diversity among them is maximized. Thereby, diversity is defined as the minimum or average normalized Hamming distance of all assortment pairs. MDASP was the topic of the 11th AIMMS-MOPTA Competition in 2019. The methods described in this article and the resulting computational results won the contest. In the following, we give a definition of the problem, introduce a mathematical model and solution approaches, determine upper bounds on the diversity, and conclude with computational experiments conducted on test instances derived from the 2D-KP literature.
In this paper, we describe an algorithmic framework for the optimal operation of transient gas transport networks consisting of a hierarchical MILP formulation together with a sequential linear programming inspired post-processing routine. Its implementation is part of the KOMPASS decision support system, which is currently used in an industrial setting.
Real-world gas transport networks are controlled by operating complex pipeline intersection areas, which comprise multiple compressor units, regulators, and valves. In the following, we introduce the concept of network stations to model them. Thereby, we represent the technical capabilities of a station by hand-tailored artificial arcs and add them to network. Furthermore, we choose from a predefined set of flow directions for each network station and time step, which determines where the gas enters and leaves the station. Additionally, we have to select a supported simple state, which consists of two subsets of artificial arcs: Arcs that must and arcs that cannot be used. The goal is to determine a stable control of the network satisfying all supplies and demands.
The pipeline intersections, that are represented by the network stations, were initially built centuries ago. Subsequently, due to updates, changes, and extensions, they evolved into highly complex and involved topologies. To extract their basic properties and to model them using computer-readable and optimizable descriptions took several years of effort.
To support the dispatchers in controlling the network, we need to compute a continuously updated list of recommended measures. Our motivation for the model presented here is to make fast decisions on important transient global control parameters, i.e., how to route the flow and where to compress the gas. Detailed continuous and discrete technical control measures realizing them, which take all hardware details into account, are determined in a subsequent step.
In this paper, we present computational results from the KOMPASS project using detailed real-world data.