Refine
Document Type
- ZIB-Report (9)
- Article (7)
- In Proceedings (2)
- Book chapter (1)
- Doctoral Thesis (1)
Language
- English (20)
Is part of the Bibliography
- no (20)
Keywords
In this article we consider the following problem arising in the context of scenario generation to evaluate the transport capacity of gas networks: In the Uncapacitated Maximum Minimum Cost Flow Problem (UMMCF) we are given a flow network where each arc has an associated nonnegative length and infinite capacity. Additionally, for each source and each sink a lower and an upper bound on its supply and demand are known, respectively. The goal is to find values for the supplies and demands respecting these bounds, such that the optimal value of the induced Minimum Cost Flow Problem is maximized, i.e., to determine a scenario with maximum transportmoment. In this article we propose two linear bilevel optimization models for UMMCF, introduce a greedy-style heuristic, and report on our first computational experiment.
This article answers two kinds of questions regarding the Bundesliga which is Germany's primary football (soccer) competition having the highest average stadium attendance worldwide. First "At any point of the season, what final rank will a certain team definitely reach?" and second "At any point of the season, what final rank can a certain team at most reach?". Although we focus especially on the Bundesliga, the models that we use to answer the two questions can easily be adopted to league systems that are similar to that of the Bundesliga.
This article is mainly motivated by the urge to answer two kinds of questions regarding the Bundesliga, which is Germany’s primary football (soccer) division having the highest average stadium attendance worldwide: “At any point in the season, what is the lowest final rank a certain team can achieve?” and “At any point in the season, what is the highest final rank a certain team can achieve?”. Although we focus on the Bundesliga in particular, the integer programming formulations we introduce to answer these questions can easily be adapted to a variety of other league systems and tournaments.
In this article we introduce a Minimum Cycle Partition Problem with Length Requirements (CPLR). This generalization of the Travelling Salesman Problem (TSP) originates from routing Unmanned Aerial Vehicles (UAVs). Apart from nonnegative edge weights, CPLR has an individual critical weight value associated with each vertex. A cycle partition, i.e., a vertex disjoint cycle cover, is regarded as a feasible solution if the length of each cycle, which is the sum of the weights of its edges, is not greater than the critical weight of each of its vertices. The goal is to find a feasible partition, which minimizes the number of cycles. In this article, a heuristic algorithm is presented together with a Mixed Integer Programming (MIP) formulation of CPLR. We furthermore introduce a conflict graph, whose cliques yield valid constraints for the MIP model. Finally, we report on computational experiments conducted on TSPLIB-based test instances.
In this article, we introduce the Maximum Diversity Assortment Selection Problem (MDASP), which is a generalization of the two-dimensional Knapsack Problem (2D-KP). Given a set of rectangles and a rectangular container, the goal of 2D-KP is to determine a subset of rectangles that can be placed in the container without overlapping, i.e., a feasible assortment, such that a maximum area is covered. MDASP is to determine a set of feasible assortments, each of them covering a certain minimum threshold of the container, such that the diversity among them is maximized. Thereby, diversity is defined as the minimum or average normalized Hamming distance of all assortment pairs. MDASP was the topic of the 11th AIMMS-MOPTA Competition in 2019. The methods described in this article and the resulting computational results won the contest. In the following, we give a definition of the problem, introduce a mathematical model and solution approaches, determine upper bounds on the diversity, and conclude with computational experiments conducted on test instances derived from the 2D-KP literature.
In this paper, we describe an algorithmic framework for the optimal operation of transient gas transport networks consisting of a hierarchical MILP formulation together with a sequential linear programming inspired post-processing routine. Its implementation is part of the KOMPASS decision support system, which is currently used in an industrial setting.
Real-world gas transport networks are controlled by operating complex pipeline intersection areas, which comprise multiple compressor units, regulators, and valves. In the following, we introduce the concept of network stations to model them. Thereby, we represent the technical capabilities of a station by hand-tailored artificial arcs and add them to network. Furthermore, we choose from a predefined set of flow directions for each network station and time step, which determines where the gas enters and leaves the station. Additionally, we have to select a supported simple state, which consists of two subsets of artificial arcs: Arcs that must and arcs that cannot be used. The goal is to determine a stable control of the network satisfying all supplies and demands.
The pipeline intersections, that are represented by the network stations, were initially built centuries ago. Subsequently, due to updates, changes, and extensions, they evolved into highly complex and involved topologies. To extract their basic properties and to model them using computer-readable and optimizable descriptions took several years of effort.
To support the dispatchers in controlling the network, we need to compute a continuously updated list of recommended measures. Our motivation for the model presented here is to make fast decisions on important transient global control parameters, i.e., how to route the flow and where to compress the gas. Detailed continuous and discrete technical control measures realizing them, which take all hardware details into account, are determined in a subsequent step.
In this paper, we present computational results from the KOMPASS project using detailed real-world data.
This study examines the usability of a real-world, large-scale natural gas transport infrastructure for hydrogen transport. We investigate whether a converted network can transport the amounts of hydrogen necessary to satisfy current energy demands. After introducing an optimization model for the robust transient control of hydrogen networks, we conduct computational experiments based on real-world demand scenarios. Using a representative network, we demonstrate that replacing each turbo compressor unit by four parallel hydrogen compressors, each of them comprising multiple serial compression stages, and imposing stricter rules regarding the balancing of in- and outflow suffices to realize transport in a majority of scenarios. However, due to the reduced linepack there is an increased need for technical and non-technical measures leading to a more dynamic network control. Furthermore, the amount of energy needed for compression increases by 364% on average.
In this article, we discuss the Length-Constrained Cycle Partition Problem (LCCP). Besides edge weights, the undirected graph in LCCP features an individual critical weight value for each vertex. A cycle partition, i.e., a vertex disjoint cycle cover, is a feasible solution if the length of each cycle is not greater than the critical weight of each of the vertices in the cycle. The goal is to find a feasible partition with the minimum number of cycles. In this article, we discuss theoretical properties, preprocessing techniques, and two mixed-integer programming models (MIP) for LCCP both inspired by formulations for the closely related Travelling Salesperson Problem (TSP). Further, we introduce conflict hypergraphs, whose cliques yield valid constraints for the MIP models.
We conclude with a report on computational experiments conducted on (A)TSPLIB-based instances. As an example, we use a routing problem in which a fleet of uncrewed aerial vehicles (UAVs) patrols a set of areas.