Refine
Document Type
- In Proceedings (1)
- Master's Thesis (1)
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- no (2)
Institute
Die Planung vom Zugumläufen ist eine der wichtigsten Aufgaben für Eisenbahnun- ternehmen. Dabei spielt auch die Einhaltung von vorgegebenen Wartungsintervallen eine zentrale Rolle für die Sicherheit und Zuverlässigkeit der Schienenfahrzeuge. Wir zeigen, wie man dieses Umlaufplanungsproblem unter Beachtung von Wartungsbe- dingungen mathematisch formuliert, modelliert und löst — sowohl in der Theorie als auch im Anwendungsfall mit Szenarien der DB Fernverkehr AG, einer Konzern- tochter der Deutschen Bahn für den Schienenpersonenfernverkehr.
Markus Reuther hat sich in seiner Dissertation [11] mit diesem Problem beschäftigt und es mit Hilfe eines passenden Hypergraphen als gemischt-ganzzahliges Programm modelliert. Neben der Modellierung präsentiert Reuther in seiner Arbeit neuartige algorithmische Ideen, darunter den sogenannten Coarse-to-Fine -Ansatz, bei dem zunächst Teile des Problems auf einer weniger detaillierten ( coarse ) Ebene gelöst werden und diese Lösung dann verwendet wird, um auf effiziente Art und Weise eine Lösung für das ursprüngliche Problem zu finden. Zur Wartungsplanung nutzt Reuther einen Fluss im Hypergraphen, der den Ressourcenverbrauch der Fahrzeuge modelliert. In der linearen Relaxierung des Modells führt dies dazu, dass die Zahl der notwendigen Wartungen systematisch unterschätzt wird. Dadurch bleibt in vielen Fällen eine große Lücke zwischen dem Zielfunktionswert einer optimalen Lösung des ganzzahligen Problems und der untere Schranke, die uns die lineare Relaxierung liefert.
Wir nehmen uns in dieser Arbeit dieses Problems an. Wir entwickeln ein auf Pfaden basierendes ganzzahliges Modell für das Umlaufplanungsproblem und zeigen, dass die untere Schranke mindestens so scharf oder schärfer ist als die untere Schranke, die das Modell von Reuther liefert. Um das Modell zu lösen, entwickeln wir einen Algorithmus, der Spaltengenerierung mit dem Coarse-to-Fine-Ansatz von Reuther verbindet. Weiterhin entwickeln wir eine Spaltenauswahlregel zur Beschleunigung des Algorithmus. Das Modell und alle in der Arbeit vorgestellten Algorithmen wur- den im Rahmen der Arbeit implementiert und mit Anwendungsszenarien der DB Fernverkehr AG getestet. Unsere Tests zeigen, dass unser Modell für fast alle Szena- rien deutlich schärfere untere Schranken liefert als das Modell von Reuther. In den getesteten Instanzen konnten wir durch die Verbesserung der unteren Schranke bis zu 99% der Optimalitätslücke schließen. In einem Drittel der Fälle konnten wir durch unseren Ansatz auch für das ganzzahlige Programm verbesserte Zielfunktionswerte erreichen
The fundamental task of every passenger railway operator is to offer an attractive railway timetable to the passengers while operating it as cost efficiently as possible. The available rolling stock has to be assigned to trips so that all trips are operated, operational requirements are satisfied, and the operating costs are minimum. This so-called Rolling Stock Rotation Problem (RSRP) is well studied in the literature. In this paper we consider an acyclic version of the RSRP that includes vehicle maintenance. As the latter is an important aspect, maintenance services have to be planned simultaneously to ensure the rotation’s feasibility in practice. Indeed, regular maintenance is important for the safety and reliability of the rolling stock as well as enforced by law in many countries. We present a new integer programming formulation that links a hyperflow to model vehicle compositions and their coupling decisions to a set of path variables that take care of the resource consumption of the individual vehicles. To solve the model we developed different column generation algorithms which are compared to each other as well as to the MILP flow formulation of [Ralf Borndörfer et al., 2016] on a test set of real world instances.