### Refine

#### Document Type

- ZIB-Report (2)
- Article (1)
- In Proceedings (1)
- Master's Thesis (1)

#### Language

- English (5)

#### Is part of the Bibliography

- no (5)

#### Keywords

- Game Theory (3)
- Mixed Integer Programming (3)
- Stackelberg Equilibrium (3)
- Linear Programming (1)
- Nash Equilibrium (1)
- Optimization (1)
- Price of Anarchy (1)
- Security Game (1)
- Security Games (1)
- Transportation Network (1)

#### Institute

Network Spot Checking Games: Theory and Application to Toll Enforcing in Transportation Networks
(2014)

We introduce the class of spot-checking games (SC games). These games model
problems where the goal is to distribute fare inspectors over a toll network.
In an SC game, the pure strategies of network users correspond to
paths in a graph, and the pure strategies of the inspectors
are subset of edges to be controlled.
Although SC games are not zero-sum, we show that a Nash equilibrium
can be computed by linear programming.
The computation of a strong Stackelberg equilibrium is
more relevant for this problem, but we show that this is NP-hard.
However, we give some bounds on the \emph{price of spite},
which measures how the
payoff of the inspector
degrades when committing to a Nash equilibrium.
Finally, we demonstrate the quality of these bounds for a real-world application,
namely the enforcement of a truck toll on German motorways.

We present a game-theoretic approach to optimize the strategies of toll enforcement on a motorway network. In contrast to previous approaches, we consider a network with an arbitrary topology, and we handle the fact that users may choose their Origin-Destination path; in particular they may take a detour to avoid sections with a high control rate. We show that a Nash equilibrium can be computed with an LP (although the game is not zero-sum), and we give a MIP for the computation of a Stackelberg equilibrium. Experimental results based on an application to the enforcement of a truck toll on German motorways are presented.

Network spot-checking games: Theory and application to toll enforcing in transportation networks
(2015)

We introduce the class of spot-checking games (SC games). These games model problems where the goal is to distribute fare inspectors over a toll network. In an SC game, the pure strategies of network users correspond to paths in a graph, and the pure strategies of the inspectors are subset of arcs to be controlled. Although SC games are not zero-sum, we show that a Nash equilibrium can be computed by linear programming. The computation of a strong Stackelberg equilibrium (SSE) is more relevant for this problem and we give a mixed integer programming (MIP) formulation for this problem. We show that the computation of such an equilibrium is NP-hard. More generally, we prove that it is NP-hard to compute a SSE in a polymatrix game, even if the game is pairwise zero-sum. Then, we give some bounds on the price of spite, which measures how the payoff of the inspector degrades when committing to a Nash equilibrium. Finally, we report computational experiments on instances constructed from real data, for an application to the enforcement of a truck toll in Germany. These numerical results show the efficiency of the proposed methods, as well as the quality of the bounds derived in this article.

This thesis represents a game-theoretic investigation of the allocation of inspectors in a transportation network, comparing Nash and Stackelberg equilibrium strategies to a strategy in which inspections are conducted proportionally to the traffic volume. It contains specifications for the integration of space and time dependencies and extensive experimental tests for the application on the transportation network of German motorways using real data. Main results are that - although the formulated spot-checking game is not zero-sum - we are able to compute a Nash equilibrium using linear programming and secondly, that experimental results yield that a Nash equilibrium strategy represents a good trade-off for the Stackelberg equilibrium strategy between efficiency of controls and computation time.