### Refine

#### Year of publication

- 2018 (6) (remove)

#### Document Type

- ZIB-Report (4)
- Article (2)

#### Keywords

- Pooling Problem (3)
- Relaxation (2)
- Cutting Planes (1)
- Extreme Points (1)
- Nonconvexity (1)
- Quadratic Programming (1)
- Relaxations (1)
- Standard Quadratic Programming (1)
- Valid Inequalities (1)

#### Institute

The amazing success of computational mathematical optimization over the last decades has been driven more by insights into mathematical structures than by the advance of computing technology. In this vein, we address applications, where nonconvexity in the model poses principal difficulties.
This paper summarizes the dissertation of Jonas Schweiger for the occasion of the GOR dissertation award 2018. We focus on the work on non-convex quadratic programs and show how problem specific structure can be used to obtain tight relaxations and speed up Branch&Bound methods. Both a classic general QP and the Pooling Problem as an important practical application serve as showcases.

A Decomposition Approach for Optimal Gas Network Extension with a Finite Set of Demand Scenarios
(2018)

Today's gas markets demand more flexibility from the network
operators which in turn have to invest into their network
infrastructure. As these investments are very cost-intensive and
long-living, network extensions should not only focus on a single
bottleneck scenario, but should increase the flexibility to fulfill
different demand scenarios. In this work, we formulate a model for
the network extension problem for multiple demand scenarios and
propose a scenario decomposition in order to solve the arising
challenging optimization tasks. In fact, each subproblem
consists of a mixed-integer nonlinear optimization problem (MINLP).
Valid bounds on the objective value are derived even
without solving the subproblems to optimality. Furthermore, we
develop heuristics that prove capable of improving the initial
solutions substantially. Results of computational experiments on
realistic network topologies are presented. It turns out that our
method is able to solve these challenging instances to optimality
within a reasonable amount of time.

We investigate new convex relaxations for the pooling problem, a classic nonconvex production planning problem in which products are mixed in intermediate pools in order to meet quality targets at their destinations. In this technical report, we characterize the extreme points of the convex hull of our non-convex set, and show that they are not finite, i.e., the convex hull is not polyhedral. This analysis was used to derive valid nonlinear convex inequalities and show that, for a specific case, they characterize the convex hull of our set. The new valid inequalities and computational results are presented in ZIB Report 18-12.

We investigate new convex relaxations for the pooling problem, a classic nonconvex production planning problem in which input materials are mixed in intermediate pools, with the outputs of these pools further mixed to make output products meeting given attribute percentage requirements. Our relaxations are derived by considering a set which arises from the formulation by considering a single product, a single attibute, and a single pool. The convex hull of the resulting nonconvex set is not polyhedral. We derive valid linear and convex nonlinear inequalities for the convex hull, and demonstrate that different subsets of these inequalities define the convex hull of the nonconvex set in three cases determined by the parameters of the set. Computational results on literature instances and newly created larger test instances demonstrate that the inequalities can significantly strengthen the convex relaxation of the pq-formulation of the pooling problem, which is the relaxation known to have the strongest bound.

In 2005 the European Union liberalized the gas market with a disruptive change and decoupled trading of natural gas from its transport. The gas is now transported by independent so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer the maximum possible capacities at each entry and exit such that any resulting gas flow can be realized by the network. The revenue from selling these capacities more than one billion Euro in Germany alone, but overestimating the capacity might compromise the security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs.
This is a report on a large project in mathematical optimization, set out to develop a new toolset for evaluating gas network capacities. The goals and the challenges as they occurred in the project are described, as well as the developments and design decisions taken to meet the requirements.

In 2005 the European Union liberalized the gas market with a disruptive change
and decoupled trading of natural gas from its transport. The gas is now trans-
ported by independent so-called transmissions system operators or TSOs. The
market model established by the European Union views the gas transmission
network as a black box, providing shippers (gas traders and consumers) the
opportunity to transport gas from any entry to any exit. TSOs are required
to offer the maximum possible capacities at each entry and exit such that any
resulting gas flow can be realized by the network. The revenue from selling these
capacities more than one billion Euro in Germany alone, but overestimating the
capacity might compromise the security of supply. Therefore, evaluating the
available transport capacities is extremely important to the TSOs.
This is a report on a large project in mathematical optimization, set out
to develop a new toolset for evaluating gas network capacities. The goals and
the challenges as they occurred in the project are described, as well as the
developments and design decisions taken to meet the requirements.