### Refine

#### Document Type

- ZIB-Report (11)
- Article (5)
- Book chapter (3)
- In Proceedings (3)
- Doctoral Thesis (1)
- Master's Thesis (1)

#### Is part of the Bibliography

- no (24)

#### Keywords

- Pooling Problem (4)
- Cutting Planes (2)
- Gas Network Planning (2)
- Nonconvexity (2)
- Quadratic Programming (2)
- Relaxation (2)
- Relaxations (2)
- Standard Quadratic Programming (2)
- Buchungsvalidierung (1)
- Computations (1)

#### Institute

The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators.
While previously network operator and gas vendor where united, they were forced to split up into independent companies.
The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way.
We show that these new paradigms lead to new and challenging mathematical optimization problems.
In order to solve them and to provide meaningful results for practice, all aspects of the underlying problems, such as combinatorics, stochasticity, uncertainty, and nonlinearity, have to be addressed.
With such special-tailored solvers, free network capacities and topological network extensions can, for instance, be determined.

Application of Multistage Stochastic Programming in Strategic Telecommunication Network Planning
(2010)

Telecommunication is fundamental for the information society. In both, the
private and the professional sector, mobile communication is nowadays taken
for granted. Starting primarily as a service for speech communication, data
service and mobile Internet access are now driving the evolution of network
infrastructure. In the year 2009, 19 million users generated over 33
million GB of traffic using mobile data services. The 3rd generation
networks (3G or UMTS) in Germany comprises over 39,000 base stations with
some 120,000 cells. From 1998 to 2008, the four network operators in
Germany invested over 33 billion Euros in their infrastructure. A careful
allocation of the resources is thus crucial for the profitability for a
network operator: a network should be dimensioned to match customers
demand. As this demand evolves over time, the infrastructure has to evolve
accordingly. The demand evolution is hard to predict and thus constitutes a
strong source of uncertainty. Strategic network planning has to take this
uncertainty into account, and the planned network evolution should adapt to
changing market conditions. The application of superior planning methods
under the consideration of uncertainty can improve the profitability of the
network and creates a competitive advantage. Multistage stochastic
programming is a suitable framework to model strategic telecommunication
network planning.
We present mathematical models and effective optimization procedures for
strategic cellular network design. The demand evolution is modeled as a
continuous stochastic process which is approximated by a discrete scenario
tree. A tree-stage approach is used for the construction of non-uniform
scenario trees that serve as input of the stochastic program. The model is
calibrated by historical traffic observations. A realistic system model of
UMTS radio cells is used that determines coverage areas and cell capacities
and takes signal propagation and interferences into account. The network
design problem is formulated as a multistage stochastic mixed integer
linear program, which is solved using state-of-the-art commercial MIP
solvers. Problem specific presolving is proposed to reduce the problem
size. Computational results on realistic data is presented. Optimization
for the expected profit and the conditional value at risk are performed and
compared.

Mobile communication is nowadays taken for granted. Having started
primarily as a service for speech communication, data service and
mobile Internet access are now driving the evolution of network
infrastructure. Operators are facing the challenge to match the
demand by continuously expanding and upgrading the network
infrastructure. However, the evolution of the customer's demand is uncertain.
We introduce a novel (long-term) network planning approach based on
multistage stochastic programming, where demand evolution is considered as
a stochastic process and the network is extended as to maximize the
expected profit. The approach proves capable of designing large-scale
realistic UMTS networks with a time-horizon of several years. Our
mathematical optimization model, the solution approach, and computational
results are presented in this paper.

Gas distribution networks are complex structures that consist of
passive pipes, and active, controllable elements such as valves and
compressors. Controlling such network means to find a suitable setting
for all active components such that a nominated amount of gas can be
transmitted from entries to exits through the network, without
violating physical or operational constraints. The control of a
large-scale gas network is a challenging task from a practical point
of view. In most companies the actual controlling process is supported
by means of computer software that is able to simulate the flow of the
gas. However, the active settings have to be set manually within such
simulation software. The solution quality thus depends on the
experience of a human planner.
When the gas network is insufficient for the transport then topology
extensions come into play. Here a set of new pipes or active elements
is determined such that the extended network admits a feasible control
again. The question again is how to select these extensions and where
to place them such that the total extension costs are
minimal. Industrial practice is again to use the same simulation
software, determine extensions by experience, add them to the virtual
network, and then try to find a feasible control of the active
elements. The validity of this approach now depends even more on the
human planner.
Another weakness of this manual simulation-based approach is that it
cannot establish infeasibility of a certain gas nomination, unless all
settings of the active elements are tried. Moreover, it is impossible
to find a cost-optimal network extension in this way.
In order to overcome these shortcomings of the manual planning
approach we present a new approach, rigorously based on mathematical
optimization. Hereto we describe a model for finding feasible
controls and then extend this model such that topology extensions can
additionally and simultaneously be covered. Numerical results for real-world instances are presented and
discussed.

Today's gas markets demand more flexibility from the network operators which in turn have to invest into their network infrastructure. As these investments are very cost-intensive and long-living, network extensions should not only focus on one bottleneck scenario, but should increase the flexibility to fulfill different demand scenarios. We formulate a model for the network extension problem for multiple demand scenarios and propose a scenario decomposition. We solve MINLP single-scenario sub-problems and obtain valid bounds even without solving them to optimality. Heuristics prove capable of improving the initial solutions substantially. Results of computational experiments are presented.

In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints.
We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before.

The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor were united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We discuss how these changing paradigms lead to new and challenging mathematical optimization problems. This includes the validation of nominations, that asks for the decision if the network’s capacity is sufficient to transport a specific amount of flow, the verification of booked capacities and the detection of available freely allocable capacities, and the topological extension of the network with new pipelines or compressors in order to increase its capacity. In order to solve each of these problems and to provide meaningful results for the practice, a mixture of different mathematical aspects have to be addressed, such as combinatorics, stochasticity, uncertainty, and nonlinearity. Currently, no numerical solver is available that can deal with such blended problems out-of-the-box. The main goal of our research is to develop such a solver, that moreover is able to solve instances of realistic size. In this article, we describe the main ingredients of our prototypical software implementations.