Refine
Year of publication
Document Type
- ZIB-Report (19)
- In Proceedings (8)
- Article (3)
- Bachelor's Thesis (1)
- Master's Thesis (1)
Keywords
Institute
- Mathematical Optimization (30)
- Mathematical Optimization Methods (26)
- AI in Society, Science, and Technology (2)
- Computational Molecular Design (2)
- Mathematics of Transportation and Logistics (2)
- Numerical Mathematics (2)
- Applied Algorithmic Intelligence Methods (1)
- Mathematical Algorithmic Intelligence (1)
We consider reoptimization (i.e. the solution of a problem based on information available from solving a similar problem) for branch-and-bound algorithms and propose a generic framework to construct a reoptimizing branch-and-bound algorithm.
We apply this to an elevator scheduling algorithm solving similar subproblems to generate columns using branch-and-bound. Our results indicate that reoptimization techniques can substantially reduce the running times of the overall algorithm.
We consider the problem of pattern detection in large scale
railway timetables. This problem arises in rolling stock optimization planning
in order to identify invariant sections of the timetable for
which a cyclic rotation plan is adequate.
We propose a dual reduction technique which leads to an decomposition
and enumeration method. Computational results for real
world instances demonstrate that the method is able to
produce optimal solutions as fast as standard MIP solvers.
The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers.
This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs.
In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to the time scale of interest, i.e., of the whole process. In this setting, the detection of a global cyclic behavior of the process becomes difficult because transitions between individual states may appear almost reversible on the small time scale of the simulation. We address this difficulty using a mixed-integer programming model that allows us to compute a cycle of clusters with maximum net flow, i.e., large forward and small backward probability. For a synthetic genetic regulatory network consisting of a ring-oscillator with three genes, we show that this approach can detect the most productive overall cycle, outperforming classical spectral analysis methods. Our method applies to general non-equilibrium steady state systems such as catalytic reactions, for which the objective value computes the effectiveness of the catalyst.
The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving.
In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to the time scale of interest, i.e., of the whole process. In this setting, the detection of a global cyclic behavior of the process becomes difficult because transitions between individual states may appear almost reversible on the small time scale of the simulation. We address this difficulty using a mixed-integer programming model that allows us to compute a cycle of clusters with maximum net flow, i.e., large forward and small backward probability. For a synthetic genetic regulatory network consisting of a ring-oscillator with three genes, we show that this approach can detect the most productive overall cycle, outperforming classical spectral analysis methods. Our method applies to general non-equilibrium steady state systems such as catalytic reactions, for which the objective value computes the effectiveness of the catalyst.
The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving.
This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 % faster overall and 23 % faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG.
The analysis of infeasibility plays an important role in solving satisfiability problems (SAT) and mixed integer programs (MIPs). In mixed integer programming, this procedure is called conflict analysis. So far, modern MIP solvers use conflict analysis only for propagation and improving the dual bound, i.e., fathoming nodes that cannot contain feasible solutions. In this short paper, we present a new approach which uses conflict information to improve the primal bound during a MIP solve. To derive new improving primal solutions we use a conflict driven diving heuristic called conflict diving that uses the information obtained by conflict analysis. Conflict diving pursues a twofold strategy. By using conflict information the new diving approach is guided into parts of the search space that are usually not explored by other diving heuristics. At the same time, conflict diving has a fail-fast-strategy to reduce the time spent if it cannot find a new primal solution. As a byproduct, additional valid conflict constraints can be derived, from which a MIP solver can gain benefit to improve the dual bound as well. To show the added-value of conflict diving within a MIP solver, conflict diving has been implemented within the non-commercial MIP solver SCIP. Experiments are carried out on general MIP instances from standard public test sets, like MIPLIB2010 or Cor@l.
Heutzutage ist eine Vielzahl der mehrstöckigen Gebäude mit Personenaufzugsgruppen
ausgestattet. Uns wohl bekannt sind die sogenannten konventionellen Systeme. Bei
diesen Systemen betätigt jeder ankommende Passagier eine der beiden Richtungstasten
und teilt dem dahinterstehenden Steuerungsalgorithmus seine gewünschte Startetage
und Fahrtrichtung mit. Betreten wird der zuerst auf der Startetage ankommende Aufzug
mit gleicher Fahrtrichtung und ausreichend Kapazität. Die entsprechende Zieletage
wird dem System erst nach dem Betreten der Fahrgastkabine mitgeteilt. Neben diesen
konventionellen Systemen gibt es Aufzugsgruppen mit Zielrufsteuerung. Die Besonderheit
eines zielrufgesteuerten Systems ist, dass ein ankommender Passagier bereits auf
der Startetage seine gewünschte Zieletage angibt und eine Rückmeldung vom System
erhält, welchen Aufzug er nutzen soll. Diese Zuweisung durch das System hat das Ziel,
die Warte- und Reisezeiten der Passagiere zu minimieren. Ein wesentlicher Faktor bei
der Berechnung warte- und reisezeitminimaler Fahrpläne ist das momentane Verkehrsmuster.
Eine Einteilung der Verkehrsszenarien lässt sich am besten bei Bürogebäuden
vornehmen. So ist es typisch für die Morgenstunden, dass jeder Passagier auf einer
Zugangsebene seine Fahrt beginnt und alle Passagiere die gleiche Fahrtrichtung haben.
Unter einer Zugangsebene ist z. B. der Haupteingang oder ein Parkdeck zu verstehen.
Ein weiterer wesentlicher Punkt bei Zielrufsystemen ist die Art der Zuweisung der Passagiere
durch das System. Zum einen gibt es unmittelbar zuweisende (UZ-) Systeme.
In einem UZ-System wird nach jeder Ankunft eines Passagiers eine Momentaufnahme
des momentanen Verkehrs erstellt und es findet eine Neuplanung und Zuweisung statt.
Eine solche Momentaufnahme werden wir im späteren Verkauf als Schnappschussproblem
bezeichnen. Jeder Passagier bekommt im Anschluss an die Lösung des Schnappschussproblems
eine Mitteilung vom System, z. B. über ein Display, welchen Aufzug
er benutzen soll. Zum anderen gibt es verzögert zuweisende (VZ-) Systeme. In diesen
Systemen wird die Erstellung und Lösung eines Schnappschussproblems bis kurz vor
Ankunft eines Aufzuges auf einer Etage verzögert. In einem VZ-System teilt das System
allen wartenden Passagieren die geplanten Zieletagen des ankommenden Aufzugs mit.
Jeder Passagier, der einen Ruf getätigt hat und zu einer dieser Zieletagen fahren will,
kann jetzt diesen Aufzug betreten. Durch die Verzögerung muss im Vergleich zu einem
UZ-System eine weitaus größere Menge von Passagieren zugewiesen werden. Dadurch
kann der Lösungsprozess bedeutend aufwändiger werden. Vorteil eines VZ-Systems ist
hingegen der größere Freiheitsgrad bei der Optimierung, da aufgrund der späten Zuweisung
die weitere Verkehrsentwicklung mit einbezogen werden kann.
VZ-Systeme sind aufgrund des größeren Freiheitsgrades interessant für die
Praxis ist, wir uns demzufolge in dieser Arbeit mit einer effizienteren Lösung dieser
Art von Schnappschussproblemen befassen. Es genügt dabei den Lösungsprozess eines
Schnappschussproblems zu betrachten. Das Ziel ist eine Reduzierung der benötigten
Rechenzeit. Unter Reoptimierung verstehen wir die Konstruktion
zulässiger Spalten in den jeweiligen Iterationsrunden der Spaltengenerierung
innerhalb eines Schnappschussproblems. Als eine Iterationsrunde bezeichnet wir einer
Menge zulässiger Touren mit negativen reduzierten Kosten. Eine effiziente Reoptimierung
zeichnet sich durch die Wiederverwendung und Aufbereitung von Informationen
aus vorangegangenen Iterationsrunden desselben Schnappschussproblems aus. Zu den
wichtigen Informationen gehört der konstruierte Suchbaum der vorherigen Iterationsrunde
mit seinen ausgeloteten (abgeschnittenen) Blättern sowie konstruierten Touren
bzw. Spalten, welche in der Iterationsrunde ihrer Konstruktion nicht zur Lösung des
Teilproblems der Spaltengenerierung beitrugen. Eine solche Wiederverwendung und
Aufbereitung von Informationen nennen wir Warmstart.