Refine
Year of publication
Document Type
- ZIB-Report (29)
- Article (6)
- In Proceedings (4)
- Book chapter (2)
- Doctoral Thesis (1)
Is part of the Bibliography
- no (42)
Keywords
- real-time (5)
- ADAC (4)
- competitive analysis (4)
- soft time windows (4)
- triangulation (4)
- vehicle dispatching (4)
- Generalized Baues Problem (3)
- Online Optimization (3)
- column generation (3)
- elevator (3)
Institute
- ZIB Allgemein (29)
- Mathematical Optimization (11)
Given an affine surjection of polytopes $\pi: P \to Q$, the Generalized Baues Problem asks whether the poset of all proper polyhedral subdivisions of $Q$ which are induced by the map $\pi$ has the homotopy type of a sphere. We extend earlier work of the last two authors on subdivisions of cyclic polytopes to give an affirmative answer to the problem for the natural surjections between cyclic polytopes $\pi: C(n,d') \to C(n,d)$ for all $1 \leq d < d' < n$.
In 1994, Sturmfels gave a polyhedral version of the Cayley Trick of elimination theory: he established an order-preserving bijection between the posets of \emph{coherent} mixed subdivisions of a Minkowski sum $\mathcal{A}_1+\cdots+\mathcal{A}_r$ of point configurations and of \emph{coherent} polyhedral subdivisions of the associated Cayley embedding $\mathcal{C}(\mathcal{A}_1,\dots,\mathcal{A}_r)$. In this paper we extend this correspondence in a natural way to cover also \emph{non-coherent} subdivisions. As an application, we show that the Cayley Trick combined with results of Santos on subdivisions of Lawrence polytopes provides a new independent proof of the Bohne-Dress Theorem on zonotopal tilings. This application uses a combinatorial characterization of lifting subdivisions, also originally proved by Santos.
In ``classical'' optimization, all data of a problem instance are considered given. The standard theory and the usual algorithmic techniques apply to such cases only. Online optimization is different. Many decisions have to be made before all data are available. In addition, decisions once made cannot be changed. How should one act ``best'' in such an environment? In this paper we survey online problems coming up in combinatorial optimization. We first outline theoretical concepts, such as competitiveness against various adversaries, to analyze online problems and algorithms. The focus, however, lies on real-world applications. We report, in particular, on theoretical investigations and our practical experience with problems arising in transportation and the automatic handling of material.
The Generalized Baues Problem asks whether for a given point configuration the order complex of all its proper polyhedral subdivisions, partially ordered by refinement, is homotopy equivalent to a sphere. In this paper, an affirmative answer is given for the vertex sets of cyclic polytopes in all dimensions. This yields the first non-trivial class of point configurations with neither a bound on the dimension, the codimension, nor the number of vertice for which this is known to be true. Moreover, it is shown that all triangulations of cyclic polytopes are lifting triangulations. This contrasts the fact that in general there are many non-regular triangulations of cyclic polytopes. Beyond this, we find triangulations of $C(11,5)$ with flip deficiency. This proves---among other things---that there are triangulations of cyclic polytopes that are non-regular for every choice of points on the moment curve.
In this paper we consider the following online transportation problem (\textsc{Oltp}): Objects are to be transported between the vertices of a given graph. Transportation requests arrive online, specifying the objects to be transported and the corresponding source and target vertex. These requests are to be handled by a server which commences its work at a designated origin vertex and which picks up and drops objects at their starts and destinations. After the end of its service the server returns to its start. The goal of \textsc{Oltp} is to come up with a transportation schedule for the server which finishes as early as possible. We first show a lower bound of~$5/3$ for the competitive ratio of any deterministic algorithm. We then analyze two simple and natural strategies which we call \textsf{REPLAN} and \textsf{IGNORE}. \textsf{REPLAN} completely discards its schedule and recomputes a new one when a new request arrives. \textsf{IGNORE} always runs a (locally optimal) schedule for a set of known requests and ignores all new requests until this schedule is completed. We show that both strategies, \textsf{REPLAN} and \textsf{IGNORE}, are $5/2$-competitive. We also present a somewhat less natural strategy \textsf{SLEEP}, which in contrast to the other two strategies may leave the server idle from time to time although unserved requests are known. We also establish a competitive ratio of~$5/2$ for the algorithm \textsf{SLEEP}. Our results are extended to the case of ``open schedules'' where the server is not required to return to its start position at the end of its service.
Dynamic Routing Algorithms in Transparent Optical Networks An Experimental Study Based on Real Data
(2002)
Today's telecommunication networks are configured statically. Whenever a connection is established, the customer has permanent access to it. However, it is observed that usually the connection is not used continuously. At this point, dynamic provisioning could increase the utilization of network resources. WDM based Optical Transport Networks (OTNs) will shortly allow for fast dynamic network reconfiguration. This enables optical broadband leased line services on demand. Since service requests competing for network resources may lead to service blocking, it is vital to use appropriate strategies for routing and wavelength assignment in transparent optical networks. We simulate the service blocking probabilities of various dynamic algorithms for this problem using a well-founded traffic model for two realistic networks. One of the algorithms using shortest path routings performs best on all instances. Surprisingly, the tie-breaking rule between equally short paths in different wavelengths decides between success or failure.
TOPCOM is a package for computing triangulations of point configurations and oriented matroids. For example, for a point configuration one can compute the chirotope, components of the flip graph of triangulations, enumerate all triangulations. The core algorithms implemented in TOPCOM are described, and implentation issues are discussed.
Combinatorial online optimization is an area with lots of applications and potential for significant progress, both in theory and practice. In this short note we sketch the ADACproblem, a typical large-scale online optimization problem, discuss some theoretical and pratical issues coming up, and explain, very briefly, how we approach this problem mathematically. Online problems are a battlefield of heuristics with many strong claims about their solution quality. We indicate that a stronger problem orientation and the use of a little more mathematics may yield.
In the cake cutting problem, $n\ge2$ players want to cut a cake into $n$ pieces so that every player gets a ``fair'' share of the cake by his own measure. We describe a protocol with $n-1$~cuts in which each player can enforce to get a share of at least~$1/(2n-2)$. Moreover we show that no protocol with $n-1$~cuts can guarantee a better fraction.