### Refine

#### Document Type

- ZIB-Report (7)
- In Proceedings (2)
- Article (1)

#### Language

- English (10)

#### Is part of the Bibliography

- no (10)

#### Institute

- ZIB Allgemein (7)
- Numerical Mathematics (2)

This paper presents the new program package MACRON for the simulation of macromolecular kinetics including standard chemical reactions. Such problems lead to countable (possibly) infinite systems of ordinary differential equations (CODE's), which are numerically treated by the so-called discrete Galerkin method here. By a chemical compiler the required analytical preprocessing is performed, such that the complete reaction system, standard kinetics as well as macromolecular reactions, can be entered in the chemical formalism. Typical macromolecular reaction steps are chain addition, termination, chain transfer and degradation (cracking). In order to ensure efficiency and reliability, high sophisticated numerical routines are built within the package. MACRON can be used without a detailed knowledge of the used numerical methods. As an illustration the application of MACRON to some realistic problems is presented.

The mathematical modeling of macromolecular reactions leads to countable (possibly infinite) systems of ordinary differential equations (CODE's). This paper reviews two recent developments of the so-called discrete Galerkin method, which has been developed for the numerical treatment of countable systems, which arise e.g. in polymer chemistry. The first approach can be considered as a method of lines with moving basis functions and has been implemented recently in the program package MACRON. The second type of the Galerkin method is characterized by a so-called outer time discretization of the complete problem and an appropriate and efficient solution of the arising subproblems. This method is realized in the research code CODEX.

The description of chain length distributions in macromolecular reaction kinetics leads to so-called countable systems of differential equations. In particular, when the appearing reaction rate coefficients depend on the chain length of the reacting macromolecules itself, an efficient numerical treatment of these systems is very difficult. Then even the evaluation of the right-hand side of the system can become prohibitively expensive with respect to computing time. In this paper we show how the discrete Galerkin method can be applied to such problems. The existing algorithm CODEX is improved by use of a multiplicative error correction scheme for time discretization and a new type of numerical preprocessing by means of a Gauss summation. Both ideas are exemplary for a wide class of approximation types and are described very briefly here. The new numerical techniques are tested on an example from soot formation, where the coagulation of molecules is modeled in terms of reaction coefficients depending on the surface of the particles and their collision frequency.

Using the perturbational-variational Rayleigh-Ritz matrix formalism, the 1/Z-expansion for the ground state of the isoelectronic $H_2$ sequence in the range of the internuclear distance $0.2\le R \le 9.0$ is calculated. Also lower bounds of the radius of convergence, based on Kato's theory of linear operators, are given. The numerical results of the 1/Z-expansion can be compared with the exact results and do not converge in the whole R-range. This behavior is in qualitative agreement with the lower bounds for the radius of convergence and enlights some still open properties of 1/Z- expansions for this sequence in the literature. {\bf PACS:} 31.15 + q; 31.20 Di; 31.20 Tz.

The subject of this study is a multilevel Finite Element Method based on an error estimator and step by step grid refinement as an universal tool for solving time--independent Schrödinger--eigenvalue problems. Numerical results for standard problems appearing in vibrational motion and molecular electronic structure calculations are given and discussed.

An error controlled finite elemente method (FEM) for solving stationary Schrödinger equations in three space dimensions is proposed. The method is based on an adaptive space discretization into tetrahedra and local polynomial basis functions of order $p=1$--$5$ defined on these tetrahedra. According to a local error estimator the triangulation is automatically adapted to the solution. Numerical results for standard problems appearing in vibrational motion and molecular structure calculations are presented and discussed. Relative precisions better than 1e-8 are obtained. For equilateral H$_3^{++}$ the adaptive FEM turns out to be superior to global basis set expansions in the literature. Our precise FEM results exclude in a definite manner the stability or metastability of equilateral H$_3^{++}$ in its groundstate.

In this paper, a rather recent algorithmic approac to the numerical simulation of macromolecula processes is surveyed. It avoids the numerical stiff integration o thousands up to millions of ODE's by constructing a scale of discret Hilbert spaces, especially weighted sequence spaces, and establishing corresponding Galerkin method. Examples including polyreactions o industrial relevance and ecological waste management by biochemica recycling illustrate the importance and efficiency of the algorithm.