### Refine

#### Document Type

- In Proceedings (4)
- ZIB-Report (3)
- Article (2)
- Bachelor's Thesis (1)
- Book chapter (1)
- Master's Thesis (1)

#### Language

- English (12)

#### Is part of the Bibliography

- no (12)

#### Keywords

In this article we introduce a Minimum Cycle Partition Problem with Length Requirements (CPLR). This generalization of the Travelling Salesman Problem (TSP) originates from routing Unmanned Aerial Vehicles (UAVs). Apart from nonnegative edge weights, CPLR has an individual critical weight value associated with each vertex. A cycle partition, i.e., a vertex disjoint cycle cover, is regarded as a feasible solution if the length of each cycle, which is the sum of the weights of its edges, is not greater than the critical weight of each of its vertices. The goal is to find a feasible partition, which minimizes the number of cycles. In this article, a heuristic algorithm is presented together with a Mixed Integer Programming (MIP) formulation of CPLR. We furthermore introduce a conflict graph, whose cliques yield valid constraints for the MIP model. Finally, we report on computational experiments conducted on TSPLIB-based test instances.

In this article, we discuss the Length-Constrained Cycle Partition Problem (LCCP). Besides edge weights, the undirected graph in LCCP features an individual critical weight value for each vertex. A cycle partition, i.e., a vertex disjoint cycle cover, is a feasible solution if the length of each cycle is not greater than the critical weight of each of the vertices in the cycle. The goal is to find a feasible partition with the minimum number of cycles. In this article, we discuss theoretical properties, preprocessing techniques, and two mixed-integer programming models (MIP) for LCCP both inspired by formulations for the closely related Travelling Salesperson Problem (TSP). Further, we introduce conflict hypergraphs, whose cliques yield valid constraints for the MIP models.
We conclude with a report on computational experiments conducted on (A)TSPLIB-based instances. As an example, we use a routing problem in which a fleet of uncrewed aerial vehicles (UAVs) patrols a set of areas.

This article discusses the Length-Constrained Cycle Partition Problem (LCCP), which constitutes a new generalization of the Travelling Salesperson Problem (TSP). Apart from nonnegative edge weights, the undirected graph in LCCP features a nonnegative critical length parameter for each vertex. A cycle partition, i.e., a vertex-disjoint cycle cover, is a feasible solution for LCCP if the length of each cycle is not greater than the critical length of each vertex contained in it. The goal is to find a feasible partition having a minimum number of cycles. Besides analyzing theoretical properties and developing preprocessing techniques, we propose an elaborate heuristic algorithm that produces solutions of good quality even for large-size instances. Moreover, we present two exact mixed-integer programming formulations (MIPs) for LCCP, which are inspired by well-known modeling approaches for TSP. Further, we introduce the concept of conflict hypergraphs, whose cliques yield valid constraints for the MIP models. We conclude with a discussion on computational experiments that we conducted using (A)TSPLIB-based problem instances. As a motivating example application, we describe a routing problem where a fleet of uncrewed aerial vehicles (UAVs) must patrol a given set of areas.

The Feasibility Pump (FP) is one of the best-known primal heuristics for mixed-integer programming (MIP): more than 15 papers suggested various modifications of all of its steps. So far, no variant considered information across multiple iterations, but all instead maintained the principle to optimize towards a single reference integer point. In this paper, we evaluate the usage of multiple reference vectors in all stages of the FP algorithm. In particular, we use LP-feasible vectors obtained during the main loop to tighten the variable domains before entering the computationally expensive enumeration stage. Moreover, we consider multiple integer reference vectors to explore further optimizing directions and introduce alternative objective scaling terms to balance the contributions of the distance functions and the original MIP objective. Our computational experiments demonstrate that the new method can improve performance on general MIP test sets. In detail, our modifications provide a 29.3% solution quality improvement and 4.0% running time improvement in an embedded setting, needing 16.0% fewer iterations over a large test set of MIP instances. In addition, the method’s success rate increases considerably within the first few iterations. In a standalone setting, we also observe a moderate performance improvement, which makes our version of FP suitable for the two main use-cases of the algorithm.

Conflict analysis has been successfully generalized from Boolean satisfiability (SAT) solving to mixed integer programming (MIP) solvers, but although MIP solvers operate with general linear inequalities, the conflict analysis in MIP has been limited to reasoning with the more restricted class of clausal constraint. This is in contrast to how conflict analysis is performed in so-called pseudo-Boolean solving, where solvers can reason directly with 0-1 integer linear inequalities rather than with clausal constraints extracted from such inequalities. In this work, we investigate how pseudo-Boolean conflict analysis can be integrated in MIP solving, focusing on 0-1 integer linear programs (0-1 ILPs). Phrased in MIP terminology, conflict analysis can be understood as a sequence of linear combinations and cuts. We leverage this perspective to design a new conflict analysis algorithm based on mixed integer rounding (MIR) cuts, which theoretically dominates the state-of-the-art division-based method in pseudo-Boolean solving. We also report results from a first proof-of-concept implementation of different pseudo-Boolean conflict analysis methods in the open-source MIP solver SCIP. When evaluated on a large and diverse set of 0-1 ILP instances from MIPLIB2017, our new MIR-based conflict analysis outperforms both previous pseudo-Boolean methods and the clause-based method used in MIP. Our conclusion is that pseudo-Boolean conflict analysis in MIP is a promising research direction that merits further study, and that it might also make sense to investigate the use of such conflict analysis to generate stronger no-goods in constraint programming.

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization, centered around the constraint integer programming framework SCIP. This report discusses the enhancements and extensions included in the SCIP Optimization Suite 9.0. The updates in SCIP 9.0 include improved symmetry handling, additions and improvements of nonlinear handlers and primal heuristics, a new cut generator and two new cut selection schemes, a new branching rule, a new LP interface, and several bug fixes. The SCIP Optimization Suite 9.0 also features new Rust and C++ interfaces for SCIP, new Python interface for SoPlex, along with enhancements to existing interfaces. The SCIP Optimization Suite 9.0 also includes new and improved features in the LP solver SoPlex, the presolving library PaPILO, the parallel framework UG, the decomposition framework GCG, and the SCIP extension SCIP-SDP. These additions and enhancements have resulted in an overall performance improvement of SCIP in terms of solving time, number of nodes in the branch-and-bound tree, as well as the reliability of the solver.