### Refine

#### Year of publication

#### Document Type

- Article (7)
- In Proceedings (5)
- ZIB-Report (5)
- Book (1)
- Book chapter (1)

#### Keywords

- $n$-pentane molecule (1)
- almost invariant sets (1)
- bridge sampling (1)
- hierarchical annealing (1)
- hybrid Monte Carlo (1)
- metastability (1)
- ratio of normalizing co (1)

A hybrid Monte Carlo method with adaptive temperature choice is presented, which exactly generates the distribution of a mixed-canonical ensemble composed of two canonical ensembles at low and high temperature. The analysis of resulting Markov chains with the reweighting technique shows an efficient sampling of the canonical distribution at low temperature, whereas the high temperature component facilitates conformational transitions, which allows shorter simulation times. \\The algorithm was tested by comparing analytical and numerical results for the small n-butane molecule before simulations were performed for a triribonucleotide. Sampling the complex multi-minima energy landscape of these small RNA segments, we observed enforced crossing of energy barriers.

Uncoupling-coupling Monte Carlo (UCMC) combines uncoupling techniques for finite Markov chains with Markov chain Monte Carlo methodology. UCMC aims at avoiding the typical metastable or trapping behavior of Monte Carlo techniques. From the viewpoint of Monte Carlo, a slowly converging long-time Markov chain is replaced by a limited number of rapidly mixing short-time ones. Therefore, the state space of the chain has to be hierarchically decomposed into its metastable conformations. This is done by means of combining the technique of conformation analysis as recently introduced by the authors, and appropriate annealing strategies. We present a detailed examination of the uncoupling-coupling procedure which uncovers its theoretical background, and illustrates the hierarchical algorithmic approach. Furthermore, application of the UCMC algorithm to the $n$-pentane molecule allows us to discuss the effect of its crucial steps in a typical molecular scenario.

Our project aimed at building an in silico model based on our recently developed in vitro osteoarthritis (OA) model seeking for refinement of the model to enhance validity and translatability towards the more sophisticated simulation of OA. In detail, the previously 3D in vitro model is based on 3D chondrogenic constructs generated solely from human bone marrow derived mesenchymal stromal cells (hMSCs). Besides studying the normal state of the model over 3 weeks, the in vitro model was treated with interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNFα) to mimic an OA-like environment.

Understanding the pathophysiological processes of osteoarthritis (OA) require adequate model systems. Although different in vitro or in vivo models have been described, further comprehensive approaches are needed to study specific parts of the disease. This study aimed to combine in vitro and in silico modeling to describe cellular and matrix-related changes during the early phase of OA. We developed an in vitro OA model based on scaffold-free cartilage-like constructs (SFCCs), which was mathematically modeled using a partial differential equation (PDE) system to resemble the processes during the onset of OA. SFCCs were produced from mesenchymal stromal cells and analyzed weekly by histology and qPCR to characterize the cellular and matrix-related composition. To simulate the early phase of OA, SFCCs were treated with interleukin-1β (IL-1β), tumor necrosis factor α (TNFα) and examined after 3 weeks or cultivated another 3 weeks without inflammatory cytokines to validate the regeneration potential. Mathematical modeling was performed in parallel to the in vitro experiments. SFCCs expressed cartilage-specific markers, and after stimulation an increased expression of inflammatory markers, matrix degrading enzymes, a loss of collagen II (Col-2) and a reduced cell density was observed which could be partially reversed by retraction of stimulation. Based on the PDEs, the distribution processes within the SFCCs, including those of IL-1β, Col-2 degradation and cell number reduction was simulated. By combining in vitro and in silico methods, we aimed to develop a valid, efficient alternative approach to examine and predict disease progression and new therapeutic strategies.

Large-eddy simulations (LES) with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) covering Germany are evaluated for four days in spring 2013 using observational data from various sources. Reference simulations with the established Consortium for Small-scale Modelling (COSMO) numerical weather prediction model and further standard LES codes are performed and used as a reference. This comprehensive evaluation approach covers multiple parameters and scales, focusing on boundary-layer variables, clouds and precipitation. The evaluation points to the need to work on parametrizations influencing the surface energy balance, and possibly on ice cloud microphysics. The central purpose for the development and application of ICON in the LES configuration is the use of simulation results to improve the understanding of moist processes, as well as their parametrization in climate models. The evaluation thus aims at building confidence in the model's ability to simulate small- to mesoscale variability in turbulence, clouds and precipitation. The results are encouraging: the high-resolution model matches the observed variability much better at small- to mesoscales than the coarser resolved reference model. In its highest grid resolution, the simulated turbulence profiles are realistic and column water vapour matches the observed temporal variability at short time-scales. Despite being somewhat too large and too frequent, small cumulus clouds are well represented in comparison with satellite data, as is the shape of the cloud size spectrum. Variability of cloud water matches the satellite observations much better in ICON than in the reference model. In this sense, it is concluded that the model is fit for the purpose of using its output for parametrization development, despite the potential to improve further some important aspects of processes that are also parametrized in the high-resolution model.

The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral.

The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation. We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.

Railway Track Allocation
(2018)

This chapter addresses the classical task to decide which train runs on which track in a railway network. In this context a track allocation defines the precise routing of trains through a railway network, which usually has only a limited capacity.
Moreover, the departure and arrival times at the visited stations of each train must simultaneously meet several operational and safety requirements.
The problem to find the 'best possible' allocation for all trains
is called the track allocation problem (TTP).
Railway systems can be modeled on a very detailed scale covering the behavior of individual trains and the safety system to a large extent. However, those microscopic models are too big and not scalable to large networks, which make them inappropriate for mathematical optimization on a network wide level. Hence, most network optimization approaches consider simplified, so called macroscopic, models. In the first part we take a look at the challenge to construct a reliable and condensed macroscopic model for the associated microscopic model and to facilitate the transition between both models of different scale.
In the main part we focus on the optimization problem for macroscopic models of the railway system. Based on classical graph-theoretical tools the track allocation problem is formulated to determine conflict-free paths in corresponding time-expanded graphs. We present standard integer programming model formulations for the track allocation problem that model resource or block conflicts in terms of packing constraints. In addition, we discuss the role of maximal clique inequalities and the concept of configuration networks. We will also present classical decomposition approaches like Lagrangian relaxation and bundle methods. Furthermore, we will discuss recently developed techniques, e.g., dynamic graph generation.
Finally, we will discuss the status quo and show a vision of mathematical optimization to support real world track allocation, i.e. integrated train routing and scheduling, in a data-dominated
and digitized railway future.