### Refine

#### Year of publication

#### Document Type

- Article (8)
- In Proceedings (5)
- ZIB-Report (5)
- Book (1)
- Book chapter (1)

#### Language

- English (20)

#### Is part of the Bibliography

- no (20)

#### Keywords

- $n$-pentane molecule (1)
- COVID-19 (1)
- SARS-CoV-2 (1)
- almost invariant sets (1)
- bridge sampling (1)
- drug discovery (1)
- hierarchical annealing (1)
- hybrid Monte Carlo (1)
- machine learning (1)
- metastability (1)

#### Institute

- Mathematical Optimization (8)
- Numerical Mathematics (6)
- Computational Systems Biology (3)
- Modeling and Simulation of Complex Processes (2)
- ZIB Allgemein (2)
- Computational Molecular Design (1)
- Mathematical Algorithmic Intelligence (1)
- Parallel and Distributed Computing (1)
- Visual Data Analysis (1)
- Visual Data Analysis in Science and Engineering (1)

A hybrid Monte Carlo method with adaptive temperature choice is presented, which exactly generates the distribution of a mixed-canonical ensemble composed of two canonical ensembles at low and high temperature. The analysis of resulting Markov chains with the reweighting technique shows an efficient sampling of the canonical distribution at low temperature, whereas the high temperature component facilitates conformational transitions, which allows shorter simulation times. \\The algorithm was tested by comparing analytical and numerical results for the small n-butane molecule before simulations were performed for a triribonucleotide. Sampling the complex multi-minima energy landscape of these small RNA segments, we observed enforced crossing of energy barriers.

Uncoupling-coupling Monte Carlo (UCMC) combines uncoupling techniques for finite Markov chains with Markov chain Monte Carlo methodology. UCMC aims at avoiding the typical metastable or trapping behavior of Monte Carlo techniques. From the viewpoint of Monte Carlo, a slowly converging long-time Markov chain is replaced by a limited number of rapidly mixing short-time ones. Therefore, the state space of the chain has to be hierarchically decomposed into its metastable conformations. This is done by means of combining the technique of conformation analysis as recently introduced by the authors, and appropriate annealing strategies. We present a detailed examination of the uncoupling-coupling procedure which uncovers its theoretical background, and illustrates the hierarchical algorithmic approach. Furthermore, application of the UCMC algorithm to the $n$-pentane molecule allows us to discuss the effect of its crucial steps in a typical molecular scenario.

The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral.

The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation. We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.

Railway transportation and in particular train timetabling is one of the basic and source application areas of combinatorial optimization and integer programming. We will discuss two well established modeling techniques for the train timetabling problem. In this paper we focus on one major ingredient - the bounding by dual relaxations. We compare two classical dual relaxations of large scale time expanded train timetabling problems - the Lagrangean Dual and Lagrangean Decomposition. We discuss the convergence behavior and show limitations of the Lagrangean Decomposition approach for a configuration based model. We introduce a third dualization approach to overcome those limitations. Finally, we present promising preliminary computational experiments that show that our new approach indeed has superior convergence properties.