Refine
Year of publication
Document Type
- Article (12)
- In Proceedings (9)
- ZIB-Report (9)
- Research data (2)
- Book chapter (1)
- Doctoral Thesis (1)
- Software (1)
Is part of the Bibliography
- no (35)
Keywords
- Statistical shape analysis (3)
- Classification (2)
- Kniegelenk (2)
- Lie groups (2)
- Manifold valued statistics (2)
- Medizinische Planung (2)
- Osteoarthrose (2)
- Sparse Geometry Reconstruction (2)
- Statistical Shape Models (2)
- Visualisierung (2)
Institute
Degenerative Gelenkerkrankungen, wie die Osteoarthrose, sind ein häufiges Krankheitsbild unter älteren Erwachsenen. Hierbei verringert sich u.a. der Gelenkspalt aufgrund degenerierten Knorpels oder geschädigter Menisci. Ein in den Gelenkspalt eingebrachter interpositionaler Spacer soll die mit der Osteoarthrose einhergehende verringerte Gelenkkontaktfläche erhöhen und so der teilweise oder vollständige Gelenkersatz hinausgezögert oder vermieden werden.
In dieser Arbeit präsentieren wir eine Planungssoftware für die Auswahl und Positionierung eines interpositionalen Spacers am Patientenmodell.
Auf einer MRT-basierten Bildsegmentierung aufbauend erfolgt eine geometrische Rekonstruktion der 3D-Anatomie des Kniegelenks. Anhand dieser wird der Gelenkspalt bestimmt, sowie ein Spacer ausgewählt und algorithmisch vorpositioniert. Die Positionierung des Spacers ist durch den Benutzer jederzeit interaktiv anpassbar.
Für jede Positionierung eines Spacers wird ein Fitness-Wert zur Knieanatomie des jeweiligen Patienten berechnet und den Nutzern Rückmeldung hinsichtlich Passgenauigkeit gegeben. Die Software unterstützt somit als Entscheidungshilfe die behandelnden Ärzte bei der patientenspezifischen Spacerauswahl.
In this study we investigate methods for fitting a Statistical Shape Model (SSM) to intraoperatively acquired point cloud data from a surgical navigation system. We validate the fitted models against the pre-operatively acquired Magnetic Resonance Imaging (MRI) data from the same patients.
We consider a cohort of 10 patients who underwent navigated total knee arthroplasty. As part of the surgical protocol the patients’ distal femurs were partially digitized. All patients had an MRI scan two months pre-operatively. The MRI data were manually segmented and the reconstructed bone surfaces used as ground truth against which the fit was compared. Two methods were used to fit the SSM to the data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM).
For both approaches, the difference between model fit and ground truth surface averaged less than 1.7 mm and excellent correspondence with the distal femoral morphology can be demonstrated.
We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential representation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidean structure. A key advantage of our framework is that statistics in a manifold shape space becomes numerically tractable improving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidean approach in terms of shape-based classification of morphological disorders.
In this study we investigate methods for fitting a Statistical Shape Model (SSM) to intraoperatively acquired point cloud data from a surgical navigation system. We validate the fitted models against the pre-operatively acquired Magnetic Resonance Imaging (MRI) data from the same patients.
We consider a cohort of 10 patients who underwent navigated total knee arthroplasty. As part of the surgical protocol the patients’ distal femurs were partially digitized. All patients had an MRI scan two months pre-operatively. The MRI data were manually segmented and the reconstructed bone surfaces used as ground truth against which the fit was compared. Two methods were used to fit the SSM to the data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM).
For both approaches, the difference between model fit and ground truth surface averaged less than 1.7 mm and excellent correspondence with the distal femoral morphology can be demonstrated.
Degenerative Gelenkerkrankungen, wie die Osteoarthrose, sind ein häufiges Krankheitsbild unter älteren Erwachsenen. Hierbei verringert sich u.a. der Gelenkspalt aufgrund degenerierten Knorpels oder geschädigter Menisci. Ein in den Gelenkspalt eingebrachter interpositionaler Spacer soll die mit der Osteoarthrose einhergehende verringerte Gelenkkontaktfläche erhöhen und so der teilweise oder vollständige Gelenkersatz hinausgezögert oder vermieden werden.
In dieser Arbeit präsentieren wir eine Planungssoftware für die Auswahl und Positionierung eines interpositionalen Spacers am Patientenmodell. Auf einer MRT-basierten Bildsegmentierung aufbauend erfolgt eine geometrische Rekonstruktion der 3D-Anatomie des Kniegelenks. Anhand dieser wird der Gelenkspalt bestimmt, sowie ein Spacer ausgewählt und algorithmisch vorpositioniert. Die Positionierung des Spacers ist durch den Benutzer jederzeit interaktiv anpassbar.
Für jede Positionierung eines Spacers wird ein Fitness-Wert zur Knieanatomie des jeweiligen Patienten berechnet und den Nutzern Rückmeldung hinsichtlich Passgenauigkeit gegeben. Die Software unterstützt somit als Entscheidungshilfe die behandelnden Ärzte bei der patientenspezifischen Spacerauswahl.
We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling.
We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability.
We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling.
We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. Additionally, as planar configurations form a submanifold in shape space, our representation allows for effective estimation of quasi-isometric surfaces flattenings. We evaluate the performance of our model w.r.t. shape-based classification of hippocampus and femur malformations due to Alzheimer's disease and osteoarthritis, respectively. In particular, we achieve state-of-the-art accuracies outperforming the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing biological shape variability, we carry out an analysis of specificity and generalization ability.
Three-dimensional medical imaging enables detailed understanding of osteoarthritis structural status. However, there remains a vast need for automatic, thus, reader-independent measures that provide reliable assessment of subject-specific clinical outcomes. To this end, we derive a consistent generalization of the recently proposed B-score to Riemannian shape spaces. We further present an algorithmic treatment yielding simple, yet efficient computations allowing for analysis of large shape populations with several thousand samples. Our intrinsic formulation exhibits improved discrimination ability over its Euclidean counterpart, which we demonstrate for predictive validity on assessing risks of total knee replacement. This result highlights the potential of the geodesic B-score to enable improved personalized assessment and stratification for interventions.