• Deutsch
Login

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Ambellan, Felix (21)
  • Zachow, Stefan (21)
  • von Tycowicz, Christoph (9)
  • Tack, Alexander (8)
  • Lamecker, Hans (6)
  • Ehlke, Moritz (5)
  • Anglin, Carolyn (3)
  • Joachimsky, Robert (2)
  • Mukhopadhyay, Anirban (2)
  • Wilson, Dave (2)
+ more

Year of publication

  • 2021 (2)
  • 2020 (2)
  • 2019 (9)
  • 2018 (2)
  • 2017 (5)
  • 2016 (1)

Document Type

  • ZIB-Report (7)
  • Article (6)
  • In Proceedings (6)
  • Book chapter (1)
  • Research data (1)

Language

  • English (19)
  • German (2)

Has Fulltext

  • no (14)
  • yes (7)

Is part of the Bibliography

  • no (21)

Keywords

  • Classification (2)
  • Kniegelenk (2)
  • Lie groups (2)
  • Manifold valued statistics (2)
  • Medizinische Planung (2)
  • Osteoarthrose (2)
  • Sparse Geometry Reconstruction (2)
  • Statistical Shape Models (2)
  • Statistical shape analysis (2)
  • Visualisierung (2)
+ more

Institute

  • Visual Data Analysis (21)
  • Therapy Planning (17)
  • Geometric Data Analysis and Processing (4)
  • Visual and Data-centric Computing (4)

21 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
A Riemannian Statistical Shape Model using Differential Coordinates (2016)
Tycowicz, Christoph von ; Ambellan, Felix ; Mukhopadhyay, Anirban ; Zachow, Stefan
We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential representation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidian structure. A key advantage of our framework is that statistics in a manifold shape space become numerically tractable improving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidian approach in terms of shape-based classification of morphological disorders.
Computerassistierte Auswahl und Platzierung von interpositionalen Spacern zur Behandlung früher Gonarthrose (2017)
Joachimsky, Robert ; Ambellan, Felix ; Zachow, Stefan
Degenerative Gelenkerkrankungen, wie die Osteoarthrose, sind ein häufiges Krankheitsbild unter älteren Erwachsenen. Hierbei verringert sich u.a. der Gelenkspalt aufgrund degenerierten Knorpels oder geschädigter Menisci. Ein in den Gelenkspalt eingebrachter interpositionaler Spacer soll die mit der Osteoarthrose einhergehende verringerte Gelenkkontaktfläche erhöhen und so der teilweise oder vollständige Gelenkersatz hinausgezögert oder vermieden werden. In dieser Arbeit präsentieren wir eine Planungssoftware für die Auswahl und Positionierung eines interpositionalen Spacers am Patientenmodell. Auf einer MRT-basierten Bildsegmentierung aufbauend erfolgt eine geometrische Rekonstruktion der 3D-Anatomie des Kniegelenks. Anhand dieser wird der Gelenkspalt bestimmt, sowie ein Spacer ausgewählt und algorithmisch vorpositioniert. Die Positionierung des Spacers ist durch den Benutzer jederzeit interaktiv anpassbar. Für jede Positionierung eines Spacers wird ein Fitness-Wert zur Knieanatomie des jeweiligen Patienten berechnet und den Nutzern Rückmeldung hinsichtlich Passgenauigkeit gegeben. Die Software unterstützt somit als Entscheidungshilfe die behandelnden Ärzte bei der patientenspezifischen Spacerauswahl.
Computerassistierte Auswahl und Platzierung von interpositionalen Spacern zur Behandlung früher Gonarthrose (2017)
Joachimsky, Robert ; Ambellan, Felix ; Zachow, Stefan
Degenerative Gelenkerkrankungen, wie die Osteoarthrose, sind ein häufiges Krankheitsbild unter älteren Erwachsenen. Hierbei verringert sich u.a. der Gelenkspalt aufgrund degenerierten Knorpels oder geschädigter Menisci. Ein in den Gelenkspalt eingebrachter interpositionaler Spacer soll die mit der Osteoarthrose einhergehende verringerte Gelenkkontaktfläche erhöhen und so der teilweise oder vollständige Gelenkersatz hinausgezögert oder vermieden werden. In dieser Arbeit präsentieren wir eine Planungssoftware für die Auswahl und Positionierung eines interpositionalen Spacers am Patientenmodell. Auf einer MRT-basierten Bildsegmentierung aufbauend erfolgt eine geometrische Rekonstruktion der 3D-Anatomie des Kniegelenks. Anhand dieser wird der Gelenkspalt bestimmt, sowie ein Spacer ausgewählt und algorithmisch vorpositioniert. Die Positionierung des Spacers ist durch den Benutzer jederzeit interaktiv anpassbar. Für jede Positionierung eines Spacers wird ein Fitness-Wert zur Knieanatomie des jeweiligen Patienten berechnet und den Nutzern Rückmeldung hinsichtlich Passgenauigkeit gegeben. Die Software unterstützt somit als Entscheidungshilfe die behandelnden Ärzte bei der patientenspezifischen Spacerauswahl.
An Efficient Riemannian Statistical Shape Model using Differential Coordinates (2018)
von Tycowicz, Christoph ; Ambellan, Felix ; Mukhopadhyay, Anirban ; Zachow, Stefan
We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential representation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidean structure. A key advantage of our framework is that statistics in a manifold shape space becomes numerically tractable improving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidean approach in terms of shape-based classification of morphological disorders.
Statistical Shape Models - Understanding and Mastering Variation in Anatomy (2019)
Ambellan, Felix ; Lamecker, Hans ; von Tycowicz, Christoph ; Zachow, Stefan
In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring.
A Surface-Theoretic Approach for Statistical Shape Modeling (2019)
Ambellan, Felix ; Zachow, Stefan ; von Tycowicz, Christoph
We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model’s ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability.
Statistical Shape Models - Understanding and Mastering Variation in Anatomy (2019)
Ambellan, Felix ; Lamecker, Hans ; von Tycowicz, Christoph ; Zachow, Stefan
In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring.
An as-invariant-as-possible GL+(3)-based Statistical Shape Model (2019)
Ambellan, Felix ; Zachow, Stefan ; von Tycowicz, Christoph
We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling.
An as-invariant-as-possible GL+(3)-based Statistical Shape Model (2019)
Ambellan, Felix ; Zachow, Stefan ; von Tycowicz, Christoph
We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling.
A Surface-Theoretic Approach for Statistical Shape Modeling (2019)
Ambellan, Felix ; Zachow, Stefan ; von Tycowicz, Christoph
We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Impressum und Datenschutz
  • Sitelinks