### Refine

#### Year of publication

#### Document Type

- ZIB-Report (18)
- Article (9)
- In Proceedings (6)

#### Language

- English (33)

#### Is part of the Bibliography

- no (33)

#### Keywords

One-quarter of Europe’s energy demand is provided by natural gas distributed through a vast pipeline network covering the whole of Europe. At a cost of 1 million Euros per kilometer the extension of the European pipeline network is already a multi-billion Euro business. Therefore, automatic planning tools that support the decision process are desired. We model the topology optimization problem in gas networks by a mixed-integer nonlinear program (MINLP). This gives rise to a so-called active transmission problem, a continuous nonlinear non-convex feasibility problem which emerges from the MINLP model by fixing all integral variables. We offer novel sufficient conditions for proving the infeasibility of this active transmission problem. These conditions can be expressed in the form of a mixed-integer program (MILP), i.e., the infeasibility of a non-convex continuous nonlinear program (NLP) can be certified by solving an MILP. This result provides an efficient pruning procedure in a branch-and-bound algorithm. Our computational results demonstrate a substantial speedup for the necessary computations.

In this paper we introduce a technique to produce tighter cutting planes for mixed-integer non-linear programs. Usually, a cutting plane is generated to cut off a specific infeasible point. The underlying idea is to use the infeasible point to restrict the feasible region in order to obtain a tighter domain. To ensure validity, we require that every valid cut separating the infeasible point from the restricted feasible region is still valid for the original feasible region. We translate this requirement in terms of the separation problem and the reverse polar. In particular, if the reverse polar of the restricted feasible region is the same as the reverse polar of the feasible region, then any cut valid for the restricted feasible region that \emph{separates} the infeasible point, is valid for the feasible region. We show that the reverse polar of the \emph{visible points} of the feasible region from the infeasible point coincides with the reverse polar of the feasible region. In the special where the feasible region is described by a single non-convex constraint intersected with a convex set we provide a characterization of the visible points. Furthermore, when the non-convex constraint is quadratic the characterization is particularly simple. We also provide an extended formulation for a relaxation of the visible points when the non-convex constraint is a general polynomial. Finally, we give some conditions under which for a given set there is an inclusion-wise smallest set, in some predefined family of sets, whose reverse polars coincide.

Recently, Kronqvist et al. (J Global Optim 64(2):249–272, 2016) rediscovered the supporting hyperplane algorithm of Veinott (Oper Res 15(1):147–152, 1967) and demonstrated its computational benefits for solving convex mixed integer nonlinear programs. In this paper we derive the algorithm from a geometric point of view. This enables us to show that the supporting hyperplane algorithm is equivalent to Kelley’s cutting plane algorithm (J Soc Ind Appl Math 8(4):703–712, 1960) applied to a particular reformulation of the problem. As a result, we extend the applicability of the supporting hyperplane algorithm to convex problems represented by a class of general, not necessarily convex nor differentiable, functions.

The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global epsilon-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solver can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithm’s ability to generate strong dual bounds through extensive computational experiments.

Secure energy transport is considered as highly relevant for the basic infrastructure of nowadays society and economy. To satisfy increasing demands and to handle more diverse transport situations, operators of energy networks regularly expand the capacity of their network by building new network elements, known as the expansion planning problem.
A key constraint function in expansion planning problems is a nonlinear and nonconvex potential loss function. In order to improve the algorithmic performance of state-of-the-art MINLP solvers, this paper presents an algebraic description for the convex envelope of this function. Through a thorough computational study, we show that this tighter relaxation tremendously improve the performance of the MINLP solver SCIP on a large test set of practically relevant instances for the expansion planning problem. In particular, the results show that our achievements lead to an improvement of the solver performance for a development version by up to 58%.

Maximal Quadratic-Free Sets
(2020)

The intersection cut paradigm is a powerful framework that facilitates the generation of valid linear inequalities, or cutting planes, for a potentially complex set S. The key ingredients in this construction are a simplicial conic relaxation of S and an S-free set: a convex zone whose interior does not intersect S. Ideally, such S-free set would be maximal inclusion-wise, as it would generate a deeper cutting plane. However, maximality can be a challenging goal in general. In this work, we show how to construct maximal S-free sets when S is defined as a general quadratic inequality. Our maximal S-free sets are such that efficient separation of a vertex in LP-based approaches to quadratically constrained problems is guaranteed. To the best of our knowledge, this work is the first to provide maximal quadratic-free sets.

Given a factorable function f, we propose a procedure that constructs a concave underestimor of f that is tight at a given point. These underestimators can be used to generate intersection cuts. A peculiarity of these underestimators is that they do not rely on a bounded domain. We propose a strengthening procedure for the intersection cuts that exploits the bounds of the domain. Finally, we propose an extension of monoidal strengthening to take advantage of the integrality of the non-basic variables.

Recently, Kronqvist et al. (2016) rediscovered the supporting hyperplane algorithm of Veinott (1967) and demonstrated its computational benefits for solving convex mixed-integer nonlinear programs. In this paper we derive the algorithm from a geometric point of view. This enables us to show that the supporting hyperplane algorithm is equivalent to Kelley's cutting plane algorithm applied to a particular reformulation of the problem. As a result, we extend the applicability of the supporting hyperplane algorithm to convex problems represented by general, not necessarily convex, differentiable functions that satisfy a mild condition.

One of the most fundamental ingredients in mixed-integer nonlinear programming solvers is the well- known McCormick relaxation for a product of two variables x and y over a box-constrained domain. The starting point of this paper is the fact that the convex hull of the graph of xy can be much tighter when computed over a strict, non-rectangular subset of the box. In order to exploit this in practice, we propose to compute valid linear inequalities for the projection of the feasible region onto the x-y-space by solving a sequence of linear programs akin to optimization-based bound tightening. These valid inequalities allow us to employ results from the literature to strengthen the classical McCormick relaxation. As a consequence, we obtain a stronger convexification procedure that exploits problem structure and can benefit from supplementary information obtained during the branch-and bound algorithm such as an objective cutoff. We complement this by a new bound tightening procedure that efficiently computes the best possible bounds for x, y, and xy over the available projections. Our computational evaluation using the academic solver SCIP exhibit that the proposed methods are applicable to a large portion of the public test library MINLPLib and help to improve performance significantly.