Refine
Year of publication
Document Type
- Article (9)
- ZIB-Report (4)
- In Proceedings (3)
Language
- English (16)
Keywords
In many applications, geodesic hierarchical models are adequate for the study of temporal observations. We employ such a model derived for manifold-valued data to Kendall's shape space. In particular, instead of the Sasaki metric, we adapt a functional-based metric, which increases the computational efficiency and does not require the implementation of the curvature tensor. We propose the corresponding variational time discretization of geodesics and apply the approach for the estimation of group trends and statistical testing of 3D shapes derived from an open access longitudinal imaging study on osteoarthritis.
We analytically determine Jacobi fields and parallel transports and compute geodesic regression in Kendall’s shape space. Using the derived expressions,
we can fully leverage the geometry via Riemannian optimization and thereby reduce the computational expense by several orders of magnitude over common,
nonlinear constrained approaches. The methodology is demonstrated by performing a longitudinal statistical analysis of epidemiological shape data. As an example
application we have chosen 3D shapes of knee bones, reconstructed from image
data of the Osteoarthritis Initiative (OAI). Comparing subject groups with incident and developing osteoarthritis versus normal controls, we find clear differences in the temporal development of femur shapes. This paves the way for early prediction of incident knee osteoarthritis, using geometry data alone.
In many applications, geodesic hierarchical models are adequate for the study of temporal observations. We employ such a model derived for manifold-valued data to Kendall's shape space. In particular, instead of the Sasaki metric, we adapt a functional-based metric, which increases the computational efficiency and does not require the implementation of the curvature tensor. We propose the corresponding variational time discretization of geodesics and apply the approach for the estimation of group trends and statistical testing of 3D shapes derived from an open access longitudinal imaging study on osteoarthritis.
This paper proposes a generalization of the ordinary de Casteljau algorithm to manifold-valued data including an important special case which uses the exponential map of a symmetric space or Riemannian manifold. We investigate some basic properties of the corresponding Bézier curves and present applications to curve design on polyhedra and implicit surfaces as well as motion of rigid body and positive definite matrices. Moreover, we apply our approach to construct canal and developable surfaces.
For Kendall’s shape space we determine analytically Jacobi fields and parallel transport, and compute geodesic regression. Using the derived expressions, we can fully leverage the geometry via Riemannian optimization and reduce the computational expense by several orders of magnitude. The methodology is demonstrated by performing a longitudinal statistical analysis of epidemiological shape data.
As application example we have chosen 3D shapes of knee bones, reconstructed from image data of the Osteoarthritis Initiative. Comparing subject groups with incident and developing osteoarthritis versus normal controls, we find clear differences in the temporal development of femur shapes. This paves the way for early prediction of incident knee osteoarthritis, using geometry data only.
This paper presents the outcomes of a contest organized to evaluate methods for the online recognition of heterogeneous gestures from sequences of 3D hand poses. The task is the detection of gestures belonging to a dictionary of 16 classes characterized by different pose and motion features. The dataset features continuous sequences of hand tracking data where the gestures are interleaved with non-significant motions. The data have been captured using the Hololens 2 finger tracking system in a realistic use-case of mixed reality interaction. The evaluation is based not only on the detection performances but also on the latency and the false positives, making it possible to understand the feasibility of practical interaction tools based on the algorithms proposed. The outcomes of the contest's evaluation demonstrate the necessity of further research to reduce recognition errors, while the computational cost of the algorithms proposed is sufficiently low.
The Sasaki metric is the canonical metric on the tangent bundle TM of a Riemannian manifold M. It is highly useful for data analysis in TM (e.g., when one is interested in the statistics of a set of geodesics in M). To this end, computing the Riemannian logarithm is often necessary, and an iterative algorithm was proposed by Muralidharan and Fletcher. In this note, we derive approximation formulas of the energy gradients in their algorithm that we use with success.
In many applications, geodesic hierarchical models are adequate for the study of temporal observations. We employ such a model derived for manifold-valued data to Kendall's shape space. In particular, instead of the Sasaki metric, we adapt a functional-based metric, which increases the computational efficiency and does not require the implementation of the curvature tensor. We propose the corresponding variational time discretization of geodesics and employ the approach for longitudinal analysis of 2D rat skulls shapes as well as 3D shapes derived from an imaging study on osteoarthritis. Particularly, we perform hypothesis test and estimate the mean trends.