### Refine

#### Year of publication

#### Document Type

- ZIB-Report (12)
- In Proceedings (9)
- Article (5)

#### Language

- English (26)

#### Is part of the Bibliography

- no (26)

#### Keywords

#### Institute

We propose a game theoretic model for the spatial distribution of inspectors on a
transportation network.
The problem is to spread out the controls so as to enforce the payment of a transit
toll. We formulate a linear program to find
the control distribution which maximizes the expected toll revenue,
and a mixed integer program for the problem of minimizing
the number of evaders. Furthermore, we show that the problem of finding an optimal
mixed strategy for a coalition of $N$ inspectors can be solved
efficiently by a column generation procedure. Finally, we give experimental results
from an application to the truck toll on German motorways.

This paper proposes the first model for toll enforcement optimization
on German motorways. The enforcement is done by mobile control teams and our
goal is to produce a schedule achieving network-wide control, proportional to
spatial and time-dependent traffic distributions. Our model consists of two
parts. The first plans
control tours using a vehicle routing approach with profits and some side
constraints. The second plans feasible rosters for the control teams. Both
problems can be modeled as Multi-Commodity Flow Problems. Adding additional
coupling constraints produces a large-scale integrated integer programming
formulation. We show that this model can be solved to optimality for real
world instances associated with a control area in East Germany.

In this paper a bottom-up approach of automatic simplification of a railway network is presented. Starting from a very detailed, microscopic level, as it is used in railway simulation, the network is transformed by an algorithm to a less detailed level (macroscopic network), that is sufficient for long-term planning and optimization. In addition running and headway times are rounded to a pre-chosen time discretization by a special cumulative method, which we will present and analyse in this paper. After the transformation we fill the network with given train requests to compute an optimal slot allocation. Then the optimized schedule is re-transformed into the microscopic level and can be simulated without any conflicts occuring between the slots. The algorithm is used to transform the network of the very dense Simplon corridor between Swiss and Italy. With our aggregation it is possible for the first time to generate a profit maximal and conflict free timetable for the corridor across a day by a simultaneously optimization run.

This paper presents a case study on a railway timetable optimization for the very dense Simplon corridor, a major railway connection in the Alps between Switzerland and Italy. Starting from a detailed microscopic network as it is used in railway simulation, the data is transformed by an automatic procedure to a less detailed macroscopic network, that is sufficient for the purpose of capacity planning and amenable to state-of-the-art integer programming optimization methods. In this way, the macroscopic railway network is saturated with trains. Finally, the corresponding timetable is re-transformed to the microscopic level in such a way that it can be operated without any conflicts among the slots. Using this integer programming based micro-macro aggregation-disaggregation approach, it becomes for the first time possible to generate a profit maximal and conflict free timetable for the complete Simplon corridor over an entire day by a simultaneous optimization of all trains requests. This also allows to to undertake a sensitivity analysis of various problem parameters.

Today the railway timetabling process and the track allocation
is one of the most challenging problems to solve by a railway company.
Especially due to the deregulation of the transport market in the recent years several
suppliers of railway traffic have entered the market in Europe. This leads to more
potential conflicts between trains caused by an increasing demand of train paths.
Planning and operating railway transportation systems is extremely hard due
to the combinatorial complexity of the underlying discrete optimization problems,
the technical intricacies, and the immense size of the problem instances.
In order to make best use of the infrastructure and to ensure economic operation,
efficient planning of the railway operation is indispensable.
Mathematical optimization models and algorithms can help
to automatize and tackle these challenges.
Our contribution in this paper is to present a renewed planning process
due to the liberalization in Europe and an associated concept for track allocation, that consists
of three important parts, simulation, aggregation, and optimization.
Furthermore, we present results of our general framework for real world data.

We consider the problem of enforcing a toll on a transportation network with limited inspection resources. We formulate a game theoretic model to optimize the allocation of the inspectors, taking the reaction of the network users into account. The model includes several important aspects for practical operation of the control strategy, such as duty types for the inspectors. In contrast to an existing formulation using flows to describe the users' strategies we choose a path formulation and identify dominated user strategies to significantly reduce the problem size. Computational results suggest that our approach is better suited for practical instances.

Network Spot Checking Games: Theory and Application to Toll Enforcing in Transportation Networks
(2014)

We introduce the class of spot-checking games (SC games). These games model
problems where the goal is to distribute fare inspectors over a toll network.
In an SC game, the pure strategies of network users correspond to
paths in a graph, and the pure strategies of the inspectors
are subset of edges to be controlled.
Although SC games are not zero-sum, we show that a Nash equilibrium
can be computed by linear programming.
The computation of a strong Stackelberg equilibrium is
more relevant for this problem, but we show that this is NP-hard.
However, we give some bounds on the \emph{price of spite},
which measures how the
payoff of the inspector
degrades when committing to a Nash equilibrium.
Finally, we demonstrate the quality of these bounds for a real-world application,
namely the enforcement of a truck toll on German motorways.

We present a game-theoretic approach to optimize the strategies of toll enforcement on a motorway network. In contrast to previous approaches, we consider a network with an arbitrary topology, and we handle the fact that users may choose their Origin-Destination path; in particular they may take a detour to avoid sections with a high control rate. We show that a Nash equilibrium can be computed with an LP (although the game is not zero-sum), and we give a MIP for the computation of a Stackelberg equilibrium. Experimental results based on an application to the enforcement of a truck toll on German motorways are presented.