### Refine

#### Document Type

- Article (1)
- In Proceedings (1)
- ZIB-Report (1)

#### Language

- English (3)

#### Is part of the Bibliography

- no (3)

#### Keywords

#### Institute

We consider the stochastic extensible bin packing problem (SEBP) in which $n$ items of stochastic size are packed into $m$ bins of unit capacity. In contrast to the classical bin packing problem, bins can be extended at extra cost. This problem plays an important role in stochastic environments such as in surgery scheduling: Patients must be assigned to operating rooms beforehand, such that the regular capacity is fully utilized while the amount of overtime is as small as possible.
This paper focuses on essential ratios between different classes of policies: First, we consider the price of non-splittability, in which we compare the optimal non-anticipatory policy against the optimal fractional assignment policy. We show that this ratio has a tight upper bound of $2$. Moreover, we develop an analysis of a fixed assignment variant of the LEPT rule yielding a tight approximation ratio of $1+1/e \approx 1.368$ under a reasonable assumption on the distributions of job durations.
Furthermore, we prove that the price of fixed assignments, which describes the loss when restricting to fixed assignment policies, is within the same factor. This shows that in some sense, LEPT is the best fixed assignment policy we can hope for.

We consider the stochastic scheduling problem of minimizing the expected makespan on m parallel identical machines. While the (adaptive) list scheduling policy achieves an approximation ratio of 2, any (non-adaptive) fixed assignment policy has performance guarantee Ω(logm/loglogm). Although the performance of the latter class of policies are worse, there are applications in which non-adaptive policies are desired. In this work, we introduce the two classes of δ-delay and τ-shift policies whose degree of adaptivity can be controlled by a parameter. We present a policy - belonging to both classes - which is an O(loglogm)-approximation for reasonably bounded parameters. In other words, an exponential improvement on the performance of any fixed assignment policy can be achieved when allowing a small degree of adaptivity. Moreover, we provide a matching lower bound for any δ-delay and τ-shift policy when both parameters, respectively, are in the order of the expected makespan of an optimal non-anticipatory policy.

We consider the stochastic extensible bin packing problem (SEBP) in which n items of stochastic size are packed into m bins of unit capacity. In contrast to the classical bin packing problem, the number of bins is fixed and they can be extended at extra cost. This problem plays an important role in stochastic environments such as in surgery scheduling: Patients must be assigned to operating rooms beforehand, such that the regular capacity is fully utilized while the amount of overtime is as small as possible.
This paper focuses on essential ratios between different classes of policies: First, we consider the price of non-splittability, in which we compare the optimal non-anticipatory policy against the optimal fractional assignment policy. We show that this ratio has a tight upper bound of 2. Moreover, we develop an analysis of a fixed assignment variant of the LEPT rule yielding a tight approximation ratio of (1+e−1)≈1.368 under a reasonable assumption on the distributions of job durations.
Furthermore, we prove that the price of fixed assignments, related to the benefit of adaptivity, which describes the loss when restricting to fixed assignment policies, is within the same factor. This shows that in some sense, LEPT is the best fixed assignment policy we can hope for.