### Refine

#### Document Type

- ZIB-Report (13)
- Habilitation (1)

#### Language

- English (14)

#### Has Fulltext

- yes (14)

#### Is part of the Bibliography

- no (14)

#### Keywords

- semidefinite programming (4)
- max-cut (2)
- semidefinite relaxations (2)
- spectral bundle method (2)
- ATSP (1)
- Eigenvalue optimization (1)
- bisection (1)
- bundle method (1)
- combinatorial optimization (1)
- computational (1)

#### Institute

- ZIB Allgemein (14)
- Mathematical Optimization (1)

The recent spectral bundle method allows to compute, within reasonable time, approximate dual solutions of large scale semidefinite quadratic 0-1 programming relaxations. We show that it also generates a sequence of primal approximations that converge to a primal optimal solution. Separating with respect to these approximations gives rise to a cutting plane algorithm that converges to the optimal solution under reasonable assumptions on the separation oracle and the feasible set. We have implemented a practical variant of the cutting plane algorithm for improving semidefinite relaxations of constrained quadratic 0-1 programming problems by odd-cycle inequalities. We also consider separating odd-cycle inequalities with respect to a larger support than given by the cost matrix and present a heuristic for selecting this support. Our preliminary computational results for max-cut instances on toroidal grid graphs and balanced bisection instances indicate that warm start is highly efficient and that enlarging the support may sometimes improve the quality of relaxations considerably.

A Case Study of Joint Online Truck Scheduling and Inventory Management for Multiple Warehouses
(2005)

For a real world problem --- transporting pallets between warehouses in order to guarantee sufficient supply for known and additional stochastic demand --- we propose a solution approach via convex relaxation of an integer programming formulation, suitable for online optimization. The essential new element linking routing and inventory management is a convex piecewise linear cost function that is based on minimizing the expected number of pallets that still need transportation. For speed, the convex relaxation is solved approximately by a bundle approach yielding an online schedule in 5 to 12 minutes for up to 3 warehouses and 40000 articles; in contrast, computation times of state of the art LP-solvers are prohibitive for online application. In extensive numerical experiments on a real world data stream, the approximate solutions exhibit negligible loss in quality; in long term simulations the proposed method reduces the average number of pallets needing transportation due to short term demand to less than half the number observed in the data stream.

We report numerical results for SBmethod --- a publically available implementation of the spectral bundle method --- applied to the 7$^{th}$ DIMACS challenge test sets that are semidefinite relaxations of combinatorial optimization problems. The performance of the code is heavily influenced by parameters that control bundle update and eigenvalue computation. Unfortunately, no mathematically sound guidelines for setting them are known. Based on our experience with SBmethod, we propose heuristics for dynamically updating the parameters as well as a heuristc for improving the starting point. These are now the default settings of SBmethod Version 1.1. We compare their performance on the DIMACS instances to our previous best choices for Version 1.0. SBmethod Version 1.1 is also part of the independent DIMACS benchmark by H.~Mittelmann. Based on these results we try to analyze strengths and weaknesses of our approach in comparison to other codes for large scale semidefinite programming.

Semidefinite relaxations of quadratic 0-1 programming or graph partitioning problems are well known to be of high quality. However, solving them by primal-dual interior point methods can take much time even for problems of moderate size. The recent spectral bundle method of Helmberg and Rendl can solve quite efficiently large structured equality-constrained semidefinite programs if the trace of the primal matrix variable is fixed, as happens in many applications. We extend the method so that it can handle inequality constraints without seriously increasing computation time. Encouraging preliminary computational results are reported.

A central drawback of interior point methods for semidefinite programs is their lack of ability to exploit problem structure in cost and coefficient matrices. This restricts applicability to problems of small dimension. Typically semidefinite relaxations arising in combinatorial applications have sparse and well structured cost and coefficient matrices of huge order. We present a method that allows to compute acceptable approximations to the optimal solution of large problems within reasonable time. Semidefinite programming problems with constant trace on the primal feasible set are equivalent to eigenvalue optimization problems. These are convex nonsmooth programming problems and can be solved by bundle methods. We propose to replace the traditional polyhedral cutting plane model constructed by means of subgradient information by a semidefinite model that is tailored for eigenvalue problems. Convergence follows from the traditional approach but a proof is included for completeness. We present numerical examples demonstrating the efficacy of the approach on combinatorial examples.

We investigate the potential and limits of interior point based cutting plane algorithms for semidefinite relaxations on basis of implementations for max-cut and quadratic 0-1 knapsack problems. Since the latter has not been described before we present the algorithm in detail and include numerical results.

The m-Cost ATSP
(1999)

Although the m-ATSP (or multi traveling salesman problem) is well known for its importance in scheduling and vehicle routing, it has, to the best of our knowledge, never been studied polyhedraly, i.e., it has always been transformed to the standard ATSP. This transformation is valid only if the cost of an arc from node $i$ to node $j$ is the same for all machines. In many practical applications this is not the case, machines produce with different speeds and require different (usually sequence dependent) setup times. We present first results of a polyhedral analysis of the m-ATSP in full generality. For this we exploit the tight relation between the subproblem for one machine and the prize collecting traveling salesman problem. We show that, for $m\ge 3$ machines, all facets of the one machine subproblem also define facets of the m-ATSP polytope. In particular the inequalities corresponding to the subtour elimination constraints in the one machine subproblems are facet defining for m-ATSP for $m\ge 2$ and can be separated in polynomial time. Furthermore, they imply the subtour elimination constraints for the ATSP-problem obtained via the standard transformation for identical machines. In addition, we identify a new class of facet defining inequalities of the one machine subproblem, that are also facet defining for m-ATSP for $m\ge 2$. To illustrate the efficacy of the approach we present numerical results for a scheduling problem with non-identical machines, arising in the production of gift wrap at Herlitz PBS AG.

Semidefinite Programming
(1999)

Due to its many applications in control theory, robust optimization, combinatorial optimization and eigenvalue optimization, semidefinite programming had been in wide spread use even before the development of efficient algorithms brought it into the realm of tractability. Today it is one of the basic modeling and optimization tools along with linear and quadratic programming. Our survey is an introduction to semidefinite programming, its duality and complexity theory, its applications and algorithms.

We present computational experiments for solving quadratic $(0,1)$ problems. Our approach combines a semidefinite relaxation with a cutting plane technique, and is applied in a Branch and Bound setting. Our experiments indicate that this type of approach is very robust, and allows to solve many moderately sized problems, having say, less than 100 binary variables, in a routine manner.

Quadratic Knapsack Relaxations Using Cutting Planes and Semidefinite Programming: extended abstract
(1995)

We investigate dominance relations between basic semidefinite relaxations and classes of cuts. We show that simple semidefinite relaxations are tighter than corresponding linear relaxations even in case of linear cost functions. Numerical results are presented illustrating the quality of these relaxations.