Refine
Document Type
- ZIB-Report (6)
- Article (4)
- In Proceedings (3)
- Master's Thesis (1)
- Other (1)
Is part of the Bibliography
- no (15)
Keywords
- duty scheduling (2)
- duty templates (2)
- Benders decomposition (1)
- Column Generation (1)
- Crew Planning (1)
- Depot Planning (1)
- Railway Track Assignment (1)
- Variable-Depth Neighborhood Search (1)
- driver satisfaction (1)
- rostering (1)
Institute
Duty Scheduling Templates
(2012)
We propose duty templates as a novel concept to produce similar duty
schedules for similar days of operation in public transit. Duty templates
can conveniently handle various types of similarity requirements, and
they can be implemented with ease using standard algorithmic techniques.
They have produced good results in practice.
Duty Scheduling Templates
(2012)
We propose duty templates as a novel concept to produce similar duty schedules for similar days of operation in public transit. Duty templates can conveniently handle various types of similarity requirements, and they can be implemented with ease using standard algorithmic techniques. They have produced good results in practice.
Duty rostering problems occur in different application contexts and come in different flavors. They give rise to very large scale integer programs which ypically have lots of solutions and extremely fractional LP relaxations. In such a situation, heuristics can be a viable algorithmic choice. We propose an mprovement method of the Lin-Kernighan type for the solution of duty rostering problems. We illustrate its versatility and solution quality on three different applications in public transit, vehicle routing, and airline rostering with a focus on the management of preferences, fairness, and fatigue, respectively.
Managing rolling stock with no passengers aboard is a critical component of railway operations. In particular, one problem is to park the rolling stock on a given set of tracks at the end of a day or service. Depending on the parking assignment, shunting may be required in order for a parked train to depart or for an incoming train to park. Given a collection of tracks M and a collection of trains T with fixed arrival-departure timetable, the train assignment problem (TAP) is to determine the maximum number of trains from T that can be parked on M according to the timetable and without the use of shunting. Hence, efficiently solving the TAP allows to quickly compute feasible parking schedules that do not require further shunting adjustments. In this paper, we present two integer programming models for solving the TAP. To our knowledge, this is the first integrated approach that considers track lengths along with the three most common types of parking tracks. We compare these models on a theoretical level. We also prove that a decision version of the TAP is NP-complete, justifying the use of integer programming techniques. Using stochastic and robust modelling techniques, both models produce parking assignments that are optimized and robust according to random train delays.
We conclude with computational results for both models, observing that they perform well on real timetables.
Managing rolling stock with no passengers aboard is a critical component of railway operations. In particular, one problem is to park the rolling stock on a given set of tracks at the end of a day or service. Depending on the parking assignment, shunting may be required in order for a parked train to depart or for an incoming train to park. Given a collection of tracks M and a collection of trains T with fixed arrival-departure timetable, the train assignment problem (TAP) is to determine the maximum number of trains from T that can be parked on M according to the timetable and without the use of shunting. Hence, efficiently solving the TAP allows to quickly compute feasible parking schedules that do not require further shunting adjustments. In this paper, we present two integer programming models for solving the TAP. To our knowledge, this is the first integrated approach that considers track lengths along with the three most common types of parking tracks. We compare these models on a theoretical level. We also prove that a decision version of the TAP is NP-complete, justifying the use of integer programming techniques. Using stochastic and robust modelling techniques, both models produce parking assignments that are optimized and robust according to random train delays. We conclude with computational results for both models, observing that they perform well on real timetables.
Managing rolling stock with no passengers aboard is a critical component of railway operations. One aspect of managing rolling stock is to park the rolling stock on a given set of tracks at the end of a day or service. Depending on the parking assignment, shunting may be required in order for a parked train to depart or for an incoming train to park. Given a collection of tracks M and a collection of trains T with a fixed arrival-departure timetable, the train assignment problem (TAP) is to determine the maximum number of trains from T that can be parked on M according to the timetable and without the use of shunting. Hence, efficiently solving the TAP allows to quickly compute feasible parking schedules that do not require further shunting adjustments. In this paper, we show that the TAP is NP-hard and present two integer programming models for solving the TAP. We compare both models on a theoretical level. Moreover, to our knowledge, we consider the first approach that integrates track lengths along with the three most common types of parking tracks FIFO, LIFO and FREE tracks in a common model. Furthermore, to optimize against uncertainty in the arrival times of the trains we extend our models by stochastic and robust modeling techniques. We conclude by giving computational results for both models, observing that they perform well on real timetables.
Duty rostering problems occur in different application contexts and come in different flavors. They give rise to very large scale integer programs which ypically have lots of solutions and extremely fractional LP relaxations. In such a situation, heuristics
can be a viable algorithmic choice. We propose an mprovement method of the Lin-Kernighan type for the solution of duty rostering problems. We illustrate its versatility and solution quality on three different applications in public transit, vehicle routing, and
airline rostering with a focus on the management of preferences, fairness, and fatigue, respectively.
Integrated treatment of hitherto individual steps in the planning process of public transit companies discloses opportunities to reduce costs and to improve the quality of service. The arising integrated planning problems are complex and their solution requires the development of novel mathematical methods. This article proposes a mathematical optimization approach to integrate duty scheduling and rostering in public transit, which allows to significantly increase driver satisfaction at almost zero cost. This is important in order to to increase the attractiveness of the driver profession. The integration is based on coupling the subproblems by duty templates, which, compared to a coupling by duties, drastically reduces the problem complexity.
In this paper, we consider the Cyclic Crew Rostering Problem with Fairness Requirements (CCRP-FR). In this problem, attractive cyclic rosters have to be constructed for groups of employees, considering multiple, a priori determined, fairness levels. The attractiveness follows from the structure of the rosters (e.g., sufficient rest times and variation in work), whereas fairness is based on the work allocation among the different roster groups. We propose a three-phase heuristic for the CCRP-FR, which combines the strength of column generation techniques with a large-scale neighborhood search algorithm. The design of the heuristic assures that good solutions for all fairness levels are obtained quickly, and can still be further improved if additional running time is available. We evaluate the performance of the algorithm using real-world data from Netherlands Railways, and show that the heuristic finds close to optimal solutions for many of the considered instances. In particular, we show that the heuristic is able to quickly find major improvements upon the current sequential practice: For most instances, the heuristic is able to increase the attractiveness by at least 20% in just a few minutes.