Refine
Document Type
- Article (2)
- ZIB-Report (2)
- In Proceedings (1)
Language
- English (5)
Is part of the Bibliography
- no (5)
Keywords
- Investment planning (1)
- Multi-energy systems (1)
- Unit commitment (1)
The imperative to decarbonize energy systems has intensified the need for efficient transformations within the heating sector, with a particular focus on district heating networks. This study addresses this challenge by proposing a comprehensive optimization approach evaluated on the district heating
network of the Märkisches Viertel of Berlin. Our objective is to simultaneously optimize heat production with three targets: minimizing costs, minimizing CO2-emissions, and maximizing heat generation from Combined Heat and Power (CHP) plants for enhanced efficiency.
To tackle this optimization problem, we employed a Mixed-Integer Linear Program (MILP) that encompasses the conversion of various fuels into heat and power, integration with relevant markets, and considerations for technical constraints on power plant operation. These constraints include startup
and minimum downtime, activation costs, and storage limits. The ultimate goal is to delineate the Pareto front, representing the optimal trade-offs between the three targets. We evaluate variants of the 𝜖-constraint algorithm for their effectiveness in coordinating these objectives, with a simultaneous focus on the quality of the estimated Pareto front and computational efficiency. One algorithm explores solutions on an evenly spaced grid in the objective space, while another dynamically adjusts the grid based on identified solutions. Initial findings highlight the strengths and limitations of each algorithm, providing guidance on algorithm selection depending on desired outcomes and computational constraints.
Our study emphasizes that the optimal choice of algorithm hinges on the density and distribution of solutions in the feasible space. Whether solutions are clustered or evenly distributed significantly influences algorithm performance. These insights contribute to a nuanced understanding of algorithm selection for multi-objective multi-energy system optimization, offering valuable guidance for future research and practical applications for planning sustainable district heating networks.
In light of the energy transition production planning of future decarbonized energy systems lead to very large and complex optimization problems. A widely used modeling paradigm for modeling and solving such problems is mathematical programming. While there are various scientific energy system models and modeling tools, most of them do not provide the necessary level of detail or the modeling flexibility to be applicable for industrial usage. Industrial modeling tools, on the other hand, provide a high level of detail and modeling flexibility. However, those models often exhibit a size and complexity that restricts their scope to a time horizon of several months, severely complicating long-term planning. As a remedy, we propose a model class that is detailed enough for real-world usage but still compact enough for long-term planning. The model class is based on a generalized unit commitment problem on a network with investment decisions. The focus lies on the topological dependency of different energy production and transportation units.
Within a wide view to stimulate intermodal transport, this paper is devoted to the examination of the intrinsically related problems of designing freight carrying services and determining their associated prices as observed by the shipper firms. A path-based multicommodity formulation is developed for a medium-term planning horizon, from the perspective of an intermodal operator. In the quest of incorporating nonprice attributes, two approaches are proposed to depict a realistic assessment of the service quality. First, frequency delay constraints are added to the upper level problem. Second, based on a random utility model, behavioural concepts are integrated in the expression of the lower level as a logistics costs minimization problem. Exact tests are invoked on real-world instances, demonstrating the capability of the presented approaches of reaching reasonable results within acceptable computation times and optimality gaps. The broader level-of-service perspective imposes additional costs on the service providers, although to a lesser extent on long-distance freight corridors, as indicated by the computed market share and net profit. Further experiments are conducted to test the impact of certain transport management instruments (e.g. subsidies and service capacities) on the modal split, as well as to assess the intermodality’s future based on a scenario analysis methodology.
An iterative two-stage heuristic algorithm for a bilevel service network design and pricing model
(2021)
Building upon earlier research, we revisit a bilevel formulation of service design and pricing for freight networks, with the aim of investigating its algorithmic aspects. The model adds substantial computational challenges to the existing literature, as it deals with general integer network design variables. An iterative heuristic algorithm is introduced, based on the concepts of inverse optimization and neighbourhood search. The procedure alternates between two versions of restricted formulations of the model while inducing promising changes into the service assignments. The approach has proven a high performance for all of the considered real-world instances. Its efficiency rests on its ability to deliver results within a close proximity to those obtained by the exact solver in terms of quality, yet within a significantly smaller amount of time, and to land feasible solutions for the large-sized instances that could not be previously solved. In line with the sustainable transport goals, a deeper observation of the transport management side highlights the strategy of the algorithm favouring freight consolidation and achieving high load factors.
The SCIP Optimization Suite provides a collection of software packages for
mathematical optimization centered around the constraint integer programming frame-
work SCIP. This paper discusses enhancements and extensions contained in version 7.0
of the SCIP Optimization Suite. The new version features the parallel presolving library
PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op-
timization problems and can be used stand-alone or integrated into SCIP via a presolver
plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im-
provements in the Benders’ decomposition solver of SCIP, user-defined decomposition
structures can be read, which are used by the automated Benders’ decomposition solver
and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation
that is used to predict the completion of the overall solving process and potentially
trigger restarts. Moreover, substantial performance improvements of the MIP core were
achieved by new developments in presolving, primal heuristics, branching rules, conflict
analysis, and symmetry handling. Last, not least, the report presents updates to other
components and extensions of the SCIP Optimization Suite, in particular, the LP solver
SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP.