### Refine

#### Document Type

- Article (6)
- In Proceedings (1)
- In Collection (1)

#### Language

- English (8)

#### Has Fulltext

- no (8)

#### Is part of the Bibliography

- no (8)

#### Institute

We introduce a scheme for real-time nonlinear interpolation of a set of shapes. The scheme exploits the structure of the shape interpolation problem, in particular, the fact that the set of all possible interpolated shapes is a low-dimensional object in a high-dimensional shape space. The interpolated shapes are defined as the minimizers of a nonlinear objective functional on the shape space. Our approach is to construct a reduced optimization problem that approximates its unreduced counterpart and can be solved in milliseconds. To achieve this, we restrict the optimization to a low-dimensional subspace that is specifically designed for the shape interpolation problem. The construction of the subspace is based on two components: a formula for the calculation of derivatives of the interpolated shapes and a Krylov-type sequence that combines the derivatives and the Hessian of the objective functional. To make the computational cost for solving the reduced optimization problem independent of the resolution of the example shapes, we combine the dimensional reduction with schemes for the efficient approximation of the reduced nonlinear objective functional and its gradient. In our experiments, we obtain rates of 20-100 interpolated shapes per second even for the largest examples which have 500k vertices per example shape.

We propose a new framework for spacetime optimization that can generate artistic motion with a long planning horizon for complex virtual characters. The scheme can be used for generating general types of motion and neither requires motion capture data nor an initial motion that satisfies the constraints. Our modeling of the spacetime optimization combines linearized dynamics and a novel warping scheme for articulated characters. We show that the optimal motions can be described using a combination of vibration modes, wiggly splines, and our warping scheme. This enables us to restrict the optimization to low-dimensional spaces of explicitly parametrized motions. Thereby the computation of an optimal motion is reduced to a low-dimensional non-linear least squares problem, which can be solved with standard solvers. We show examples of motions created by specifying only a few constraints for positions and velocities.

Many efficient computational methods for physical simulation are based on model reduction. We propose new model reduction techniques for the approximation of reduced forces and for the construction of reduced shape spaces of deformable objects that accelerate the construction of a reduced dynamical system, increase the accuracy of the approximation, and simplify the implementation of model reduction. Based on the techniques, we introduce schemes for real-time simulation of deformable objects and interactive deformation-based editing of triangle or tet meshes. We demonstrate the effectiveness of the new techniques in different experiments with elastic solids and shells and compare them to alternative approaches.

Creating motions of objects or characters that are physically plausible and follow an animatorâ€™s intent is a key task in computer animation. The spacetime constraints paradigm is a valuable approach to this problem, but it suffers from high computational costs. Based on spacetime constraints, we propose a technique that controls the motion of deformable objects and offers an interactive response. This is achieved by a model reduction of the underlying variational problem, which combines dimension reduction, multipoint linearization, and decoupling of ODEs. After a preprocess, the cost for creating or editing a motion is reduced to solving a number of one-dimensional spacetime problems, whose solutions are the wiggly splines introduced by Kass and Anderson [2008]. We achieve interactive response using a new fast and robust numerical scheme for solving a set of one-dimensional problems based on an explicit representation of the wiggly splines.

We propose a framework for deformation-based surface modeling that is interactive, robust and intuitive to use. The deformations are described by a non-linear optimization problem that models static states of elastic shapes under external forces which implement the user input. Interactive response is achieved by a combination of model reduction, a robust energy approximation, and an efficient quasi-Newton solver. Motivated by the observation that a typical modeling session requires only a fraction of the full shape space of the underlying model, we use second and third derivatives of a deformation energy to construct a low-dimensional shape space that forms the feasible set for the optimization. Based on mesh coarsening, we propose an energy approximation scheme with adjustable approximation quality. The quasi-Newton solver guarantees superlinear convergence without the need of costly Hessian evaluations during modeling. We demonstrate the effectiveness of the approach on different examples including the test suite introduced in [Botsch and Sorkine 2008].

In recent years, substantial progress in shape analysis has been achieved through methods that use the spectra and eigenfunctions of discrete Laplace operators. In this work, we study spectra and eigenfunctions of discrete differential operators that can serve as an alternative to the discrete Laplacians for applications in shape analysis. We construct such operators as the Hessians of surface energies, which operate on a function space on the surface, or of deformation energies, which operate on a shape space. In particular, we design a quadratic energy such that, on the one hand, its Hessian equals the Laplace operator if the surface is a part of the Euclidean plane, and, on the other hand, the Hessian eigenfunctions are sensitive to the extrinsic curvature (e.g. sharp bends) on curved surfaces. Furthermore, we consider eigenvibrations induced by deformation energies, and we derive a closed form representation for the Hessian (at the rest state of the energy) for a general class of deformation energies. Based on these spectra and eigenmodes, we derive two shape signatures. One that measures the similarity of points on a surface, and another that can be used to identify features of surfaces.

In this work, we study the spectra and eigenmodes of the Hessian of various discrete surface energies and discuss applications to shape analysis. In particular, we consider a physical model that describes the vibration modes and frequencies of a surface through the eigenfunctions and eigenvalues of the Hessian of a deformation energy, and we derive a closed form representation for the Hessian (at the rest state of the energy) for a general class of deformation energies. Furthermore, we design a quadratic energy, such that the eigenmodes of the Hessian of this energy are sensitive to the extrinsic curvature of the surface.
Based on these spectra and eigenmodes, we derive two shape signatures. One that measures the similarity of points on a surface, and another that can be used to identify features of the surface. In addition, we discuss a spectral quadrangulation scheme for surfaces.

We propose a scheme for animating deformable objects based on spacetime optimization. The main feature is that it robustly and quickly (within a few seconds) generates interesting motion from a sparse set of spacetime constraints. Providing only partial (as opposed to full) keyframes for positions and velocities is sufficient. The computed motion satisfies the constraints and the remaining degrees of freedom are determined by physical principles using elasticity and the spacetime constraints paradigm. Our modeling of the spacetime optimization problem combines dimensional reduction, modal coordinates, wiggly splines, and rotation strain warping. Controlling the warped motion requires the derivative of the warp map. We derive a representation of the derivative that can be efficiently and robustly evaluated. Our solver is based on a theorem that characterizes the solutions of the optimization problem and allows us to restrict the optimization to very low-dimensional search spaces. This treatment of the optimization problem avoids a time discretization and the resulting method can robustly deal with sparse input and wiggly motion.