Refine
Document Type
- ZIB-Report (4)
- In Proceedings (1)
Language
- English (5)
Is part of the Bibliography
- no (5)
Keywords
- linear programming (3)
- mixed-integer semidefinite programming (3)
- Steiner tree optimization (2)
- branch-and-cut (2)
- branch-and-price (2)
- column generation framework (2)
- constraint integer programming (2)
- mixed-integer linear programming (2)
- mixed-integer nonlinear programming (2)
- optimization solver (2)
Institute
The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving multi-objective problems, and SCIP-SDP for solving mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed and has now reached version 4.0. The goal of this report is to present the recent changes to the collection. We not only describe the theoretical basis, but focus on implementation aspects and their computational consequences.
The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers.
This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs.
This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 % faster overall and 23 % faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG.
The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion for cutting planes, one focus of this release are decomposition algorithms. Both SCIP and the automatic decomposition solver GCG now include advanced functionality for performing Benders’ decomposition in a generic framework. GCG’s detection loop for structured matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has been significantly revised for greater flexibility. Two SCIP extensions have been added
to solve the recursive circle packing problem by a problem-specific column generation scheme and to demonstrate the use of the new Benders’ framework for stochastic capacitated facility location. Last, not least, the report presents updates and additions to the other components and extensions of the SCIP Optimization Suite: the LP solver SoPlex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP.
We study a complex planning and scheduling problem arising from the build-up process of air cargo pallets and containers, collectively referred to as unit load devices (ULD), in which ULDs must be assigned to workstations for loading. Since air freight usually becomes available gradually along the planning horizon, ULD build-ups must be scheduled neither too early to avoid underutilizing ULD capacity, nor too late to avoid resource conflicts with other flights. Whenever possible, ULDs should be built up in batches, thereby giving ground handlers more freedom to rearrange cargo and utilize the ULD's capacity efficiently. The resulting scheduling problem has an intricate cost function and produces large time-expanded models, especially for longer planning horizons. We propose a logic-based Benders decomposition approach that assigns batches to time intervals and workstations in the master problem, while the actual schedule is decided in a subproblem. By choosing appropriate intervals, the subproblem becomes a feasibility problem that decomposes over the workstations. Additionally, the similarity of many batches is exploited by a strengthening procedure for no-good cuts. We benchmark our approach against a time-expanded MIP formulation from the literature on a publicly available data set. It solves 15% more instances to optimality and decreases run times by more than 50% in the geometric mean. This improvement is especially pronounced for longer planning horizons of up to one week, where the Benders approach solves over 50% instances more than the baseline