### Refine

#### Document Type

- In Proceedings (4)
- ZIB-Report (4)

#### Keywords

- Periodic Event Scheduling Problem (2)
- Periodic Timetabling (2)
- Balanced Cuts (1)
- Bipartite matching (1)
- Fahrplan (1)
- Graph Partitioning (1)
- Graph Separators (1)
- Mixed Integer Programming (1)
- Nahverkehr (1)
- Periodic timetabling (1)

We investigate polyhedral aspects of the Periodic Event Scheduling Problem (PESP), the mathematical basis for periodic timetabling problems in public transport. Flipping the orientation of arcs, we obtain a new class of valid inequalities, the flip inequalities, comprising both the known cycle and change-cycle inequalities. For a point of the LP relaxation, a violated flip inequality can be found in pseudo-polynomial time, and even in linear time for a spanning tree solution. Our main result is that the integer vertices of the polytope described by the flip inequalities are exactly the vertices of the PESP polytope, i.e., the convex hull of all feasible periodic slacks with corresponding modulo parameters. Moreover, we show that this flip polytope equals the PESP polytope in some special cases. On the computational side, we devise several heuristic approaches concerning the separation of cutting planes from flip inequalities. These produce better dual bounds for the smallest and largest instance of the benchmarking library PESPlib.

A Simple Way to Compute the Number of Vehicles That Are Required to Operate a Periodic Timetable
(2018)

We consider the following planning problem in public transportation: Given a periodic timetable, how many vehicles are required to operate it? In [9], for this sequential approach, it is proposed to first expand the periodic timetable over time, and then answer the above question by solving a flow-based aperiodic optimization problem. In this contribution we propose to keep the compact periodic representation of the timetable and simply solve a particular perfect matching problem. For practical networks, it is very much likely that the matching problem decomposes into several connected components. Our key observation is that there is no need to change any turnaround decision for the vehicles of a line during the day, as long as the timetable stays exactly the same.

The timetable is the essence of the service offered by any provider of public transport'' (Jonathan Tyler, CASPT 2006). Indeed, the timetable has a major impact on both operating costs and on passenger comfort. Most European agglomerations and railways use periodic timetables in which operation repeats in regular intervals. In contrast, many North and South American municipalities use trip timetables in which the vehicle trips are scheduled individually subject to frequency constraints. We compare these two strategies with respect to vehicle operation costs. It turns out that for short time horizons, periodic timetabling can be suboptimal; for sufficiently long time horizons, however, periodic timetabling can always be done in an optimal way'.

In the planning process of public transportation companies, designing the timetable is among the core planning steps. In particular in the case of periodic (or cyclic) services, the Periodic Event Scheduling Problem (PESP) is well-established to compute high-quality periodic timetables.
We are considering algorithms for computing good solutions for the very basic PESP with no additional extra features as add-ons. The first of these algorithms generalizes several primal heuristics that had been proposed in the past, such as single-node cuts and the modulo network simplex algorithm. We consider partitions of the graph, and identify so-called delay cuts as a structure that allows to generalize several previous heuristics. In particular, when no more improving delay cut can be found, we already know that the other heuristics could not improve either.
The second of these algorithms turns a strategy, that had been discussed in the past, upside-down: Instead of gluing together the network line-by-line in a bottom-up way, we develop a divide-and-conquer-like top-down approach to separate the initial problem into two easier subproblems such that the information loss along their cutset edges is as small as possible.
We are aware that there may be PESP instances that do not fit well the separator setting. Yet, on the RxLy-instances of PESPlib in our experimental computations, we come up with good primal solutions and dual bounds. In particular, on the largest instance (R4L4), this new separator approach, which applies a state-of-the-art solver as subroutine, is able to come up with better dual bounds than purely applying this state-of-the-art solver in the very same time.

A Simple Way to Compute the Number of Vehicles That Are Required to Operate a Periodic Timetable
(2018)