Refine
Document Type
- Article (5)
- Poster (4)
- In Proceedings (3)
- ZIB-Report (3)
Language
- English (15)
Is part of the Bibliography
- no (15)
Keywords
- Articulated Models, Statistical Shape And Intensity Models, 2D/3D Anatomy Reconstruction, Pelvic Parameters Measurement, Total Hip Arthroplasty (2)
- Sparse Geometry Reconstruction (2)
- Statistical Shape Models (2)
- 3D reconstruction (1)
- Knee Arthroplasty (1)
- Total Knee Arthoplasty (1)
- acetabular orientation (1)
- articulated shape and intensity models (1)
- image registration (1)
Institute
In this study we investigate methods for fitting a Statistical Shape Model (SSM) to intraoperatively acquired point cloud data from a surgical navigation system. We validate the fitted models against the pre-operatively acquired Magnetic Resonance Imaging (MRI) data from the same patients.
We consider a cohort of 10 patients who underwent navigated total knee arthroplasty. As part of the surgical protocol the patients’ distal femurs were partially digitized. All patients had an MRI scan two months pre-operatively. The MRI data were manually segmented and the reconstructed bone surfaces used as ground truth against which the fit was compared. Two methods were used to fit the SSM to the data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM).
For both approaches, the difference between model fit and ground truth surface averaged less than 1.7 mm and excellent correspondence with the distal femoral morphology can be demonstrated.
Changes in knee shape and geometry resulting from total knee arthroplasty can affect patients in numerous important ways: pain, function, stability, range of motion, and kinematics. Quantitative data concerning these changes have not been previously available, to our knowledge, yet are essential to understand individual experiences of total knee arthroplasty and thereby improve outcomes for all patients. The limiting factor has been the challenge of accurately measuring these changes. Our study objective was to develop a conceptual framework and analysis method to investigate changes in knee shape and geometry, and prospectively apply it to a sample total knee arthroplasty population. Using clinically available computed tomography and radiography imaging systems, the three-dimensional knee shape and geometry of nine patients (eight varus and one valgus) were compared before and after total knee arthroplasty. All patients had largely good outcomes after their total knee arthroplasty. Knee shape changed both visually and numerically. On average, the distal condyles were slightly higher medially and lower laterally (range: +4.5 mm to −4.4 mm), the posterior condyles extended farther out medially but not laterally (range: +1.8 to −6.4 mm), patellofemoral distance increased throughout flexion by 1.8–3.5 mm, and patellar thickness alone increased by 2.9 mm (range: 0.7–5.2 mm). External femoral rotation differed preop and postop. Joint line distance, taking cartilage into account, changed by +0.7 to −1.5 mm on average throughout flexion. Important differences in shape and geometry were seen between pre-total knee arthroplasty and post-total knee arthroplasty knees. While this is qualitatively known, this is the first study to report it quantitatively, an important precursor to identifying the reasons for the poor outcome of some patients. Using the developed protocol and visualization techniques to compare patients with good versus poor clinical outcomes could lead to changes in implant design, implant selection, component positioning, and surgical technique. Recommendations based on this sample population are provided. Intraoperative and postoperative feedback could ultimately improve patient satisfaction.
Computed tomography analysis of knee pose and geometry before and after total knee arthroplasty
(2012)
Purpose: Despite the success of total knee arthroplasty there continues to be a significant proportion of patients who are dissatisfied. One explanation may be a shape mismatch between pre and post-operative distal femurs. The purpose of this study was to investigate a method to match a statistical shape model (SSM) to intra-operatively acquired point cloud data from a surgical navigation system, and to validate it against the pre-operative magnetic resonance imaging (MRI) data from the same patients.
Methods: A total of 10 patients who underwent navigated total knee arthroplasty also had an MRI scan less than 2 months pre-operatively. The standard surgical protocol was followed which included partial digitization of the distal femur. Two different methods were employed to fit the SSM to the digitized point cloud data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM). The available MRI data were manually segmented and the reconstructed three-dimensional surfaces used as ground truth against which the statistical shape model fit was compared.
Results: For both approaches, the difference between the statistical shape model-generated femur and the surface generated from MRI segmentation averaged less than 1.7 mm, with maximum errors occurring in less clinically important areas.
Conclusion: The results demonstrated good correspondence with the distal femoral morphology even in cases of sparse data sets. Application of this technique will allow for measurement of mismatch between pre and post-operative femurs retrospectively on any case done using the surgical navigation system and could be integrated into the surgical navigation unit to provide real-time feedback.
In this study we investigate methods for fitting a Statistical Shape Model (SSM) to intraoperatively acquired point cloud data from a surgical navigation system. We validate the fitted models against the pre-operatively acquired Magnetic Resonance Imaging (MRI) data from the same patients.
We consider a cohort of 10 patients who underwent navigated total knee arthroplasty. As part of the surgical protocol the patients’ distal femurs were partially digitized. All patients had an MRI scan two months pre-operatively. The MRI data were manually segmented and the reconstructed bone surfaces used as ground truth against which the fit was compared. Two methods were used to fit the SSM to the data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM).
For both approaches, the difference between model fit and ground truth surface averaged less than 1.7 mm and excellent correspondence with the distal femoral morphology can be demonstrated.