Refine
Document Type
- Article (2)
- In Proceedings (2)
- ZIB-Report (2)
- Book (1)
- Book chapter (1)
Language
- English (8)
Is part of the Bibliography
- no (8)
Keywords
- capacity optimization (1)
- frequency assignment (1)
- railway operations (1)
- railway planning (1)
Institute
{\begin{rawhtml} <a href="http://dx.doi.org/10.1007/s10479-007-0178-0"> Revised Version unter http://dx.doi.org/10.1007/s10479-007-0178-0</a> \end{rawhtml}} Wireless communication is used in many different situations such as mobile telephony, radio and TV broadcasting, satellite communication, and military operations. In each of these situations a frequency assignment problem arises with application specific characteristics. Researchers have developed different modelling ideas for each of the features of the problem, such as the handling of interference among radio signals, the availability of frequencies, and the optimization criterion. This survey gives an overview of the models and methods that the literature provides on the topic. We present a broad description of the practical settings in which frequency assignment is applied. We also present a classification of the different models and formulations described in the literature, such that the common features of the models are emphasized. The solution methods are divided in two parts. Optimization and lower bounding techniques on the one hand, and heuristic search techniques on the other hand. The literature is classified according to the used methods. Again, we emphasize the common features, used in the different papers. The quality of the solution methods is compared, whenever possible, on publicly available benchmark instances.
Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway cus- tomers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain devel- oping mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice, with a few notable exceptions. In this paper we address three success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will dis- cuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that math- ematical optimization can support the planning of rolling stock resources. Thus, mathematical models and optimization can lead to a greater effi- ciency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry.
Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway customers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain developing mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice (e.g. Cacchiani et al., 2014; Borndörfer et al., 2010), with a few notable exceptions. In this paper we address three individual success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will discuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that mathematical optimization can support the planning of railway resources. Thus, mathematical models and optimization can lead to a greater efficiency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry.
Planning and operating railway transportation systems is an extremely
hard task due to the combinatorial complexity of the underlying discrete
optimization problems, the technical intricacies, and the immense size of
the problem instances. Because of that, however, mathematical models
and optimization techniques can result in large gains for both railway cus-
tomers and operators, e.g., in terms of cost reductions or service quality
improvements. In the last years a large and growing group of researchers
in the OR community have devoted their attention to this domain devel-
oping mathematical models and optimization approaches to tackle many
of the relevant problems in the railway planning process. However, there
is still a gap to bridge between theory and practice, with
a few notable exceptions. In this paper we address three success stories,
namely, long-term freight train routing (part I), mid-term rolling stock
rotation planning (part II), and real-time train dispatching (part III). In
each case, we describe real-life, successful implementations. We will dis-
cuss the individual problem setting, survey the optimization literature,
and focus on particular aspects addressed by the mathematical models.
We demonstrate on concrete applications how mathematical optimization
can support railway planning and operations. This gives proof that math-
ematical optimization can support the planning of rolling stock resources.
Thus, mathematical models and optimization can lead to a greater effi-
ciency of railway operations and will serve as a powerful and innovative
tool to meet recent challenges of the railway industry.
This book promotes the use of mathematical optimization and operations research methods in rail transportation. The editors assembled thirteen contributions from leading scholars to present a unified voice, standardize terminology, and assess the state-of-the-art.
There are three main clusters of articles, corresponding to the classical stages of the planning process: strategic, tactical, and operational. These three clusters are further subdivided into five parts which correspond to the main phases of the railway network planning process: network assessment, capacity planning, timetabling, resource planning, and operational planning. Individual chapters cover:
Simulation
Capacity Assessment
Network Design
Train Routing
Robust Timetabling
Event Scheduling
Track Allocation
Blocking
Shunting
Rolling Stock
Crew Scheduling
Dispatching
Delay Propagation