Refine
Year of publication
Document Type
- Article (14)
- ZIB-Report (2)
- Book chapter (1)
- In Proceedings (1)
Language
- English (18)
Is part of the Bibliography
- no (18)
Keywords
- Schroedinger Equation (1)
- group theory (1)
- laser pulse control (1)
- photoassociation (1)
- quantum mechanics (1)
- symmetry (1)
The method of symmetry adapted wavepackets (SAWP) to solve the time-dependent Schrödinger equation for a highly symmetric potential energy surface is introduced. The angular dependence of a quantum-mechanical wavepackets is expanded in spherical harmonics where the number of close-coupled equations for the corresponding radial functions can be efficiently reduced by symmetry adaption of the rotational basis using the SWAP approach. Various techniques to generate symmetry adapted spherical harmonics (SASHs) for the point groups of highest symmetry (octahedral, icosahedral) are discussed. The standard projection operator technique involves the use of Wigner rotation matrices. Two methods to circumvent numerical instabilities occuring for large azimuthal quantum numbers are suggested. The first is based on a numerical scheme which employs Gaussian integrations yielding exact and stable results. The second is a recursive algorithm to generate higher order SASHs accurately and efficiently from lower order ones. The paper gives a complete set of ``seed functions'' generated by projection techniques which can be used obtain SASHs for all irreducible representations of the octahedral and icosahedral point groups recursively.
The photoassociation process shows strong dependence on the temporal duration of the electromagnetic field pulses and their frequencies. This dependence is investigated using quantum mechanical simulations that include all ranges of impact parameters and contributions from bound-to-bound transitions. The photoassociation yield of mercury atoms to produce excimer dimers is enhanced for short (ps) and for ultrashort (fs) pulse durations. Ultrashort laser pulses effectively overlap the entire range of free-to-bound transition, therefore achieving a maximum probability. Short pulses show a maximum in the photoassociation yield when their carrier frequency overlaps a particular free-to-bound spectroscopic resonance. Implications of these calculations on efforts to control bimolecular reactions are discussed.