### Refine

#### Year of publication

#### Document Type

- ZIB-Report (29)
- In Proceedings (20)
- Article (18)
- Book chapter (1)
- In Collection (1)

#### Language

- English (69)

#### Is part of the Bibliography

- no (69)

#### Keywords

#### Institute

- Numerical Mathematics (34)
- Computational Medicine (33)
- ZIB Allgemein (18)
- Therapy Planning (8)
- Visual Data Analysis (8)
- Visual and Data-centric Computing (8)

KARDOS - User"s Guide
(2002)

The adaptive finite element code {\sc Kardos} solves nonlinear parabolic systems of partial differential equations. It is applied to a wide range of problems from physics, chemistry, and engineering in one, two, or three space dimensions. The implementation is based on the programming language C. Adaptive finite element techniques are employed to provide solvers of optimal complexity. This implies a posteriori error estimation, local mesh refinement, and preconditioning of linear systems. Linearely implicit time integrators of {\em Rosenbrock} type allow for controlling the time steps adaptively and for solving nonlinear problems without using {\em Newton's} iterations. The program has proved to be robust and reliable. The user's guide explains all details a user of {\sc Kardos} has to consider: the description of the partial differential equations with their boundary and initial conditions, the triangulation of the domain, and the setting of parameters controlling the numerical algorithm. A couple of examples makes familiar to problems which were treated with {\sc Kardos}. We are extending this guide continuously. The latest version is available by network: {\begin{rawhtml} <A href="http://www.zib.de/Numerik/software/kardos/"> <i> Downloads.</i></a> \end{rawhtml}}

By computed tomography data (CT), the individual geometry of the mandible is quite well reproduced, also the separation between cortical and trabecular bone. Using anatomical knowledge about the architecture and the functional potential of the masticatory muscles, realistic situations were approximated. The solution of the underlying partial differential equations describing linear elastic material behaviour is provided by an adaptive finite element method. Estimations of the discretization error, local grid refinement, and multilevel techniques guarantee the reliability and efficiency of the method.

The correlation of the inner architecture of bone and its functional loading was already stated by Wolff in 1892. Our objective is to demonstrate this interdependence in the case of the human mandible. For this purpose, stress/strain profiles occuring at a human lateral bite were simulated. Additionally, by a combination of computer graphics modules, a three--dimensional volumetric visualization of bone mineral density could be given. Qualitative correspondences between the density profile of the jaw and the simulated stress/strain profiles could be pointed out. In the long run, this might enable the use of the simulation for diagnosis and prognosis. The solution of the underlying partial differential equations describing linear elastic material behaviour was provided by an adaptive finite element method. Estimates of the discretization errors, local grid refinement, and multilevel techniques guaranteed the reliability and efficiency of the method.

Structural mechanics simulation of bony organs is of general medical and biomechanical interest, because of the interdependence of the inner architecture of bone and its functional loading already stated by Wolff in 1892. This work is part of a detailed research project concerning the human mandible. By adaptive finite element techniques, stress/strain profiles occurring in the bony structure under biting were simulated. Estimates of the discretization errors, local grid refinement, and multilevel techniques guarantee the reliability and efficiency of the method. In general, our simulation requires a representation of the organ's geometry, an appropriate material description, and the load case due to teeth, muscle, or joint forces. In this paper, we want to focus on the influence of the masticatory system. Our goal is to capture the physiological situation as far as possible. By means of visualization techniques developed by the group, we are able to extract individual muscle fibres from computed tomography data. By a special algorithm, the fibres are expanded to fanlike (esp. for the musc. temporalis) coherent vector fields similar to the anatomical reality. The activity of the fibres can be adapted according to compartmentalisation of the muscles as measured by electromyological experiments. A refined sensitivity analysis proved remarkable impact of the presented approach on the simulation results.

We focus on the role of anisotropic elasticity in the simulation of the load distribution in a human mandible due to a lateral bite on the leftmost premolar. Based on experimental evidence, we adopt ``local''" orthotropy of the elastic properties of the bone tissue. Since the trajectories of anisotropic elasticity are not accessible from Computer Tomographic (CT) data, they will be reconstructed from (i) the organ's geometry and (ii) from coherent structures which can be recognized from the spatial distribution of the CT values. A sensitivity analysis comprising various 3D FE simulations reveals the relevance of elastic anisotropy for the load carrying behavior of a human mandible: Comparison of the load distributions in isotropic and anisotropic simulations indicates that anisotropy seems to ``spare''" the mandible from loading. Moreover, a maximum degree of anisotropy leads to kind of an load minimization of the mandible, expressed by a minimum of different norms of local strain, evaluated throughout the organ. Thus, we may suggest that anisotropy is not only relevant, but also in some sense ``optimal''.

The paper extends affine conjugate Newton methods from convex to nonconvex minimization, with particular emphasis on PDE problems originating from compressible hyperelasticity. Based on well-known schemes from finite dimensional nonlinear optimization, three different algorithmic variants are worked out in a function space setting, which permits an adaptive multilevel finite element implementation. These algorithms are tested on two well-known 3D test problems and a real-life example from surgical operation planning.

Reasons for the failure of adaptive methods to deliver improved efficiency when integrating monodomain models for myocardiac excitation are discussed. Two closely related techniques for reducing the computational complexity of linearly implicit integrators, deliberate sparsing and splitting, are investigated with respect to their impact on computing time and accuracy.

Pulse thermography of concrete structures is used in civil engineering for detecting voids, honeycombing and delamination. The physical situation is readily modeled by Fourier's law. Despite the simplicity of the PDE structure, quantitatively realistic numerical 3D simulation faces two major obstacles. First, the short heating pulse induces a thin boundary layer at the heated surface which encapsulates all information and therefore has to be resolved faithfully. Even with adaptive mesh refinement techniques, obtaining useful accuracies requires an unsatisfactorily fine discretization. Second, bulk material parameters and boundary conditions are barely known exactly. We address both issues by a semi-analytic reformulation of the heat transport problem and by parameter identification. Numerical results are compared with measurements of test specimens.

In this paper we present a self--adaptive finite element method to solve flame propagation problems in 3D. An implicit time integrator of Rosenbrock type is coupled with a multilevel approach in space. The proposed method is applied to an unsteady thermo--diffusive combustion model to demonstrate its potential for the solution of complicated problems.

The KASKADE toolbox defines an interface to a set of C subroutines which can be used to implement adaptive multilevel Finite Element Methods solving systems of elliptic equations in two and three space dimensions. The manual contains the description of the data structures and subroutines. The main modules of the toolbox are a runtime environment, triangulation and node handling, assembling, direct and iterative solvers for the linear systems, error estimators, refinement strategies, and graphic utilities. Additionally, we included appendices on the basic command language interface, on file formats, and on the definition of the partial differential equations which can be solved. The software is available on the ZIB ftp--server {\tt elib} in the directory {\tt pub/kaskade}. TR 93--5 supersedes TR 89--4 and TR 89--05.