### Refine

#### Document Type

- Article (2)
- ZIB-Report (1)

ORBKIT is a toolbox for postprocessing electronic structure calculations based on a highly modular and portable Python architecture. The program allows computing a multitude of electronic properties of molecular systems on arbitrary spatial grids from the basis set representation of its electronic wave function, as well as several grid-independent properties. The required data can be extracted directly from the standard output of a large number of quantum chemistry programs. ORBKIT can be used as a standalone program to determine standard quantities, for example, the electron density, molecular orbitals, and derivatives thereof. The cornerstone of ORBKIT is its modular structure. The existing basic functions can be arranged in an individual way and can be easily extended by user-written modules to determine any other derived quantity. ORBKIT offers multiple output formats that can be processed by common visualization tools (VMD, Molden, etc.). Additionally, ORBKIT offers routines to order molecular orbitals computed at different nuclear configurations according to their electronic character and to interpolate the wavefunction between these configurations. The program is open-source under GNU-LGPLv3 license and freely available at https://github.com/orbkit/orbkit/.
This article provides an overview of ORBKIT with particular focus
on its capabilities and applicability, and includes several example
calculations.

Given a time-dependent stochastic process with trajectories x(t) in a space $\Omega$, there may be sets such that the corresponding trajectories only very rarely cross the boundaries of these sets. We can analyze such a process in terms of metastability or coherence. Metastable sets M are defined in space $M\subset\Omega$, coherent sets $M(t)\subset\Omega$ are defined in space and time. Hence, if we extend the space by the time-variable t, coherent sets are metastable sets in $\Omega\times[0,\infty]$. This relation can be exploited, because there already exist spectral algorithms for the identification of metastable sets. In this article we show that these well-established spectral algorithms (like PCCA+) also identify coherent sets of non-autonomous dynamical systems. For the identification of coherent sets, one has to compute a discretization (a matrix T) of the transfer operator of the process using a space-timediscretization scheme. The article gives an overview about different time-discretization schemes and shows their applicability in two different fields of application.