Refine
Document Type
- ZIB-Report (3)
- Article (1)
- In Proceedings (1)
Is part of the Bibliography
- no (5)
Keywords
Institute
Die Business Unit PC in Augsburg ist die zentrale Produktionsstätte der Siemens--Nixdorf Informationssysteme (SNI) AG für Personal Computer sowie für einige Periphärgeräte. Das Werk, entworfen nach modernen CIM/CAI--Konzepten (Computer Integrated Manufacturing/ Computer Aided Industry), wurde 1987 errichtet. Bald zeigte sich jedoch, daß es für ein zu geringes Produktionsvolumen ausgelegt war und einige Komponenten des Systems Engpässe im Produktionsbetrieb darstellen. Das Management suchte nach Möglichkeiten, den Produktionsfluß zu verbessern, ohne teure technische Änderungen am System vornehmen zu müssen. Eine Forschungsgruppe des Konrad--Zuse--Zentrums für Informationstechnik (die ehemals an der Universität Augsburg ansässig war) analysierte, unterstützt von einigen Studenten und Ingenieuren der SNI, den Produktionsfluß und lokalisierte Schwachstellen. Basierend auf diesen Erkenntnissen wurden mathematische Fragestellungen erarbeitet und auf mathematischen Optimierungsverfahren basierende Softwarepakete entwickelt, die jetzt teilweise bei SNI im Einsatz sind. Im folgenden werden einige dieser Fragestellungen, deren Modellierung und mathematische Behandlung beschrieben. Einige der Ansätze, die hier dargestellt werden sollen, sind teilweise schon in Grötschel [Grö92] angesprochen worden.
{\def\NP{\hbox{$\cal N\kern-.1667em\cal P$}} The {\sl storage assignment problem} asks for the cost minimal assignment of containers with different sizes to storage locations with different capacities. Such problems arise, for instance, in the optimal control of automatic storage devices in flexible manufacturing systems. This problem is known to be $\NP$-hard in the strong sense. We show that the storage assignment problem is $\NP$-hard for {\sl bounded sizes and capacities}, even if the sizes have values $1$ and~$2$ and the capacities value~$2$ only, a case we encountered in practice. Moreover, we prove that no polynomial time $\epsilon$-approximation algorithm exists. This means that almost all storage assignment problems arising in practice are indeed hard.}
We report on a joint project with industry that had the aim to sequence transportation requests within an automatic storage system in such a way that the overall travel time is minimized. The manufacturing environment is such that scheduling decisions have to be made before all jobs are known. We have modeled this task as an \emph{online} Asymmetric Traveling Salesman Problem (ATSP). Several heuristics for the online ATSP are compared computationally within a simulation environment to judge which should be used in practice. Compared to the priority rule used so far, the optimization package reduced the unloaded travel time by about 40~\%. Because of these significant savings our procedure was implemented as part of the control software for the stacker cranes of the storage systems.