### Refine

#### Year of publication

#### Document Type

- ZIB-Report (37)
- In Proceedings (5)
- Article (4)
- Book chapter (3)
- Other (1)

#### Is part of the Bibliography

- no (50)

#### Keywords

- integer programming (7)
- treewidth (7)
- lower bounds (4)
- contraction degeneracy (3)
- heuristics (3)
- mixed integer programming (3)
- network design (3)
- optical networks (3)
- wavelength assignment (3)
- computations (2)

#### Institute

This paper surveys frequency assignment problems coming up in planning wireless communication services. It particularly focuses on cellular mobile phone systems such as GSM, a technology that revolutionizes communication. Traditional vertex coloring provides a conceptual framework for the mathematical modeling of many frequency planning problems. This basic form, however, needs various extensions to cover technical and organizational side constraints. Among these ramifications are $T$-coloring and list coloring. To model all the subtleties, the techniques of integer programming have proven to be very useful. The ability to produce good frequency plans in practice is essential for the quality of mobile phone networks. The present algorithmic solution methods employ variants of some of the traditional coloring heuristics as well as more sophisticated machinery from mathematical programming. This paper will also address this issue. Finally, this paper discusses several practical frequency assignment problems in detail, states the associated mathematical models, and also points to public electronic libraries of frequency assignment problems from practice. The associated graphs have up to several thousand nodes and range from rather sparse to almost complete.

Frequenzplanung im Mobilfunk
(2002)

Telekommunikation ist seit Jahren \glqq in\grqq. Zunächst gab es einen enormen Aufschwung; neue Technologien und Dienste haben eine überwältigende, nicht vorhersehbare Akzeptanz gefunden. Derzeit ist -- ausgelöst durch die UMTS-Lizenzversteigerungen, Rezessions- und Sättigungstendenzen -- eine Krise zu verzeichnen. Viele (auch wir) sind davon überzeugt, dass technischer Fortschritt und nützliche Dienste demnächst die Stimmung wieder ändern werden. Wenigen ist allerdings bewusst, welche Rolle Mathematik bei der Entwicklung und dem effizienten Einsatz vieler der neuen Kommunikationstechnologien spielt. In diesem Artikel soll kein Überblick über diesen umfangreichen Themenkreis gegeben werden. Wir zeigen lediglich an einem konkreten Beispiel aus dem Mobilfunk, der Frequenzplanung in GSM-Funknetzen, was man durch geeignete Modellierung der praktischen Fragestellung und den Einsatz problemadäquater Algorithmen erreichen kann.

We consider the design of transparent optical networks from a practical perspective. Network operators aim at satisfying the communication demands at minimum cost. Such an optimization involves three interdependent planning issues: the dimensioning of the physical topology, the routing of lightpaths, and the wavelength assignment. Further topics include the reliability of the configuration and sparse wavelength conversion for efficient use of the capacities. In this paper, we investigate this extensive optical network design task. Using a flexible device-based model, we present an integer programming formulation that supports greenfield planning as well as expansion planning on top of an existing network. As solution method, we propose a suitable decomposition approach that separates the wavelength assignment from the dimensioning and routing. Our method in particular provides a lower bound on the total cost which allows to rate the solution quality. Computational experiments on realistic networks approve the solution approach to be appropriate.

A model for the optimisation of the location and configuration of base stations in a UMTS network is described. The focus is primarily on modelling the configuration problem sufficiently accurate using mixed-integer variables and (essentially) linear constraints. These constraints reflect the limited downlink code capacity in each cell, the interference limitations for successful up- and downlink transmissions, the need for sufficiently strong (cell) pilot signals, and the potential gain for mobiles from being in soft(er) hand-over. It is also explained how to use the model as a basis for rating network configurations.

In this paper, we study wavelength assignment problems in multi-fiber WDM networks. We focus on the special case that all lightpaths have at most two links. This in particular holds in case the network topology is a star. As the links incident to a specific node in a meshed topology form a star subnetwork, results for stars are also of interest for general meshed topologies. We show that wavelength assignment with at most two links per lightpath can be modeled as a generalized edge coloring problem. By this relation, we show that for a network with an even number of fibers at all links and at most two links per lightpath, all lightpaths can be assigned a wavelength without conversion. Moreover, we derive a lower bound on the number of lightpaths to be converted for networks with arbitrary numbers of fibers at the links. A comparison with linear programming lower bounds reveals that the bounds coincide for problems with at most two links per lightpath. For meshed topologies, the cumulative lower bound over all star subnetworks equals the best known solution value for all realistic wavelength assignment instances available, by this proving optimality.

Edge contraction is shown to be a useful mechanism to improve lower bound heuristics for treewidth. A successful lower bound for treewidth is the degeneracy: the maximum over all subgraphs of the minimum degree. The degeneracy is polynomial time computable. We introduce the notion of contraction degeneracy: the maximum over all minors of the minimum degree. We show that the contraction degeneracy problem is NP-complete, even for bipartite graphs, but for fixed $k$, it is polynomial time decidable if a given graph $G$ has contraction degeneracy at least $k$. Heuristics for computing the contraction degeneracy are proposed and evaluated. It is shown that these can lead in practice to considerable improvements of the lower bound for treewidth, but can perform arbitrarily bad on some examples. A study is also made for the combination of contraction with Lucena's lower bound based on Maximum Cardinality Search (Lucena, 2003). Finally, heuristics for the treewidth are proposed and! evaluated that combine contraction with a treewidth lower bound technique by Clautiaux et al (2003).

In this paper, we study the minimum converter wavelength assignment problem in optical networks. To benchmark the quality of solutions obtained by heuristics, we derive an integer programming formula tion by generalizing the formulation of Mehrotra and Trick (1996) for the vertex coloring problem. To handle the exponential number of variables, we propose a column generation approach. Computational experiments show that the value of the linear relaxation states a good lower bound and can often prove optimality of the best solution generated heuristically.

Linear Programming Lower Bounds for Minimum Converter Wavelength Assignment in Optical Networks
(2004)

In this paper, we study the conflict-free assignment of wavelengths to lightpaths in an optical network with the opportunity to place wavelength converters. To benchmark heuristics for the problem, we develop integer programming formulations and study their properties. Moreover, we study the computational performance of the column generation algorithm for solving the linear relaxation of the most promising formulation. In many cases, a non-zero lower bound on the number of required converters is generated this way. For several instances, we in fact prove optimality since the lower bound equals the best known solution value.

The parameter contraction degeneracy -- the maximum minimum degree over all minors of a graph -- is a treewidth lower bound and was first defined in (Bodlaender, Koster, Wolle, 2004). In experiments it was shown that this lower bound improves upon other treewidth lower bounds. In this note, we examine some relationships between the contraction degeneracy and connected components of a graph, block s of a graph and the genus of a graph. We also look at chordal graphs, and we study an upper bound on the contraction degeneracy and another lower bound for treewidth. A data structure that can be used for algorithms computing the degeneracy and similar parameters, is also described.

Every lower bound for treewidth can be extended by taking the maximum of the lower bound over all subgraphs or minors. This extension is shown to be a very vital idea for improving treewidth lower bounds. In this paper, we investigate a total of nine graph parameters, providing lower bounds for treewidth. The parameters have in common that they all are the vertex-degree of some vertex in a subgra ph or minor of the input graph. We show relations between these graph parameters and study their computational complexity. To allow a practical comparison of the bounds, we developed heuristic algorithms for those parameters that are NP-hard to compute. Computational experiments show that combining the treewidth lower bounds with minors can considerably improve the lower bounds.