Päschke et al. (J Fluid Mech, 2012) studied the nonlinear dynamics of strongly tilted vortices subject to asymmetric diabatic heating by asymptotic methods. They found, inter alia, that an azimuthal Fourier mode 1 heating pattern can intensify or attenuate such a vortex depending on the relative orientation of the tilt and the heating asymmetries. The theory originally addressed the gradient wind regime which, asymptotically speaking, corresponds to vortex Rossby numbers of order unity in the limit. Formally, this restricts the applicability of the theory to rather weak vortices. It is shown below that said theory is, in contrast, uniformly valid for vanishing Coriolis parameter and thus applicable to vortices up to low hurricane strengths. An extended discussion of the asymptotics as regards their physical interpretation and their implications for the overall vortex dynamics is also provided in this context. The paper’s second contribution is a series of three-dimensional numerical simulations examining the effect of different orientations of dipolar diabatic heating on idealized tropical cyclones. Comparisons with numerical solutions of the asymptotic equations yield evidence that supports the original theoretical predictions of Päschke et al. In addition, the influence of asymmetric diabatic heating on the time evolution of the vortex centerline is further analyzed, and a steering mechanism that depends on the orientation of the heating dipole is revealed. Finally, the steering mechanism is traced back to the correlation of dipolar perturbations of potential temperature, induced by the vortex tilt, and vertical velocity, for which diabatic heating not necessarily needs to be responsible, but which may have other origins.
Neurotransmission at chemical synapses relies on the calcium-induced fusion of synaptic vesicles with the presynaptic membrane. The distance to the calcium channels determines the release probability and thereby the postsynaptic signal. Suitable models of the process need to capture both the mean and the variance observed in electrophysiological measurements of the postsynaptic current. In this work, we propose a method to directly compute the exact first- and second-order moments for signals generated by a linear reaction network under convolution with an impulse response function, rendering computationally expensive numerical simulations of the underlying stochastic counting process obsolete. We show that the autocorrelation of the process is central for the calculation of the filtered signal’s second-order moments, and derive a system of PDEs for the cross-correlation functions (including the autocorrelations) of linear reaction networks with time-dependent rates. Finally, we employ our method to efficiently compare different spatial coarse graining approaches for a specific model of synaptic vesicle fusion. Beyond the application to neurotransmission processes, the developed theory can be applied to any linear reaction system that produces a filtered stochastic signal.
Neurotransmission at chemical synapses relies on the calcium-induced fusion of synaptic vesicles with the presynaptic membrane. The distance to the calcium channels determines the release probability and thereby the postsynaptic signal. Suitable models of the process need to capture both the mean and the variance observed in electrophysiological measurements of the postsynaptic current. In this work, we propose a method to directly compute the exact first- and second-order moments for signals generated by a linear reaction network under convolution with an impulse response function, rendering computationally expensive numerical simulations of the underlying stochastic counting process obsolete. We show that the autocorrelation of the process is central for the calculation of the filtered signal’s second-order moments, and derive a system of PDEs for the cross-correlation functions (including the autocorrelations) of linear reaction networks with time-dependent rates. Finally, we employ our method to efficiently compare different spatial coarse graining approaches for a specific model of synaptic vesicle fusion. Beyond the application to neurotransmission processes, the developed theory can be applied to any linear reaction system that produces a filtered stochastic signal.
In this work, we adapt an established model for the Ca2+-induced fusion dynamics of synaptic vesicles and employ a lumping method to reduce its complexity. In the reduced system, sequential Ca2+-binding steps are merged to a single releasable state, while keeping the important dependence of the reaction rates on the local Ca2+ concentration. We examine the feasibility of this model reduction for a representative stimulus train over the physiologically relevant site-channel distances. Our findings show that the approximation error is generally small and exhibits an interesting nonlinear and non-monotonic behavior where it vanishes for very low distances and is insignificant at intermediary distances. Furthermore, we give expressions for the reduced model’s reaction rates and suggest that our approach may be used to directly compute effective fusion rates for assessing the validity of a fusion model, thereby circumventing expensive simulations.
At chemical synapses, an arriving electric signal induces the fusion of vesicles with the presynaptic membrane, thereby releasing neurotransmitters into the synaptic cleft. After a fusion event, both the release site and the vesicle undergo a recovery process before becoming available for reuse again. Of central interest is the question which of the two restoration steps acts as the limiting factor during neurotrans-mission under high-frequency sustained stimulation. In order to investigate this question, we introduce a novel non-linear reaction network which involves explicit recovery steps for both the vesicles and the release sites, and includes the induced time-dependent output current. The associated reaction dynamics are formulated by means of ordinary differential equations (ODEs), as well as via the associated stochastic jump process. While the stochastic jump model describes a single release site, the average over many release sites is close to the ODE solution and shares its periodic structure. The reason for this can be traced back to the insight that recovery dynamics of vesicles and release sites are statistically almost independent. A sensitivity analysis on the recovery rates based on the ODE formulation reveals that neither the vesicle nor the release site recovery step can be identified as the essential rate-limiting step but that the rate- limiting feature changes over the course of stimulation. Under sustained stimulation the dynamics given by the ODEs exhibit transient dynamics leading from an initial depression of the postsynaptic response to an asymptotic periodic orbit, while the individual trajectories of the stochastic jump model lack the oscillatory behavior an asymptotic periodicity of the ODE-solution.