### Refine

#### Document Type

- Article (5)
- ZIB-Report (2)

#### Language

- English (7)

#### Is part of the Bibliography

- no (7)

#### Keywords

#### Institute

We propose in this paper the Dynamic Multiobjective Shortest Problem. It features multidimensional states that can depend on several variables and not only on time; this setting is motivated by flight planning and electric vehicle routing applications. We give an exact algorithm for the FIFO case and derive from it an FPTAS, which is computationally efficient. It also features the best known complexity in the static case.

The Dynamic Multiobjective Shortest Path problem features multidimensional costs that can depend on several variables and not only on time; this setting is motivated by flight planning applications and the routing of electric vehicles. We give an exact algorithm for the FIFO case and derive from it an FPTAS for both, the static Multiobjective Shortest Path (MOSP) problems and, under mild assumptions, for the dynamic problem variant. The resulting FPTAS is computationally efficient and beats the known complexity bounds of other FPTAS for MOSP problems.

We present a new label-setting algorithm for the Multiobjective Shortest Path (MOSP) problem that computes a minimum complete set of efficient paths for a given instance. The size of the priority queue used in the algorithm is bounded by the number of nodes in the input graph and extracted labels are guaranteed to be efficient. These properties allow us to give a tight output-sensitive running time bound for the new algorithm that can almost be expressed in terms of the running time of Dijkstra’s algorithm for the Shortest Path problem. Hence, we suggest to call the algorithm Multiobjective Dijkstra Algorithm (MDA). The simplified label management in the MDA allows us to parallelize some subroutines. In our computational experiments, we compare the MDA and the classical label-setting MOSP algorithm by Martins, which we improved using new data structures and pruning techniques. On average, the MDA is 2 to 9 times faster on all used graph types. On some instances the speedup reaches an order of magnitude.

We present a new label-setting algorithm for the Multiobjective Shortest Path (MOSP) problem that computes the minimal complete set of efficient paths for a given instance. The size of the priority queue used in the algorithm is bounded by the number of nodes in the input graph and extracted labels are guaranteed to be efficient. These properties allow us to give a tight output-sensitive running time bound for the new algorithm that can almost be expressed in terms of the running time of Dijkstra's algorithm for the Shortest Path problem. Hence, we suggest to call the algorithm \emph{Multiobjective Dijkstra Algorithm} (MDA). The simplified label management in the MDA allows us to parallelize some subroutines. In our computational experiments, we compare the MDA and the classical label-setting MOSP algorithm by Martins', which we improved using new data structures and pruning techniques. On average, the MDA is $\times2$ to $\times9$ times faster on all used graph types. On some instances the speedup reaches an order of magnitude.

We introduce the Targeted Multiobjective Dijkstra Algorithm (T-MDA), a label setting algorithm for the One-to-One Multiobjective Shortest Path (MOSP) Problem. It is based on the recently published Multiobjective Dijkstra Algorithm (MDA) and equips it with A*-like techniques. For any explored subpath, a label setting MOSP algorithm decides whether the subpath can be discarded or must be stored as part of the output. A major design choice is how to store subpaths from the moment they are first explored until the mentioned final decision can be made. The T-MDA combines the polynomially bounded size of the priority queue used in the MDA and alazy management of paths that are not in the queue. The running time bounds from the MDA remain valid. In practice, the T-MDA outperforms known algorithms from the literature and the increased memory consumption is negligible. In this paper, we benchmark the T-MDA against an improved version of the state of the art NAMOA∗drOne-to-One MOSP algorithm from the literature on a standard testbed.

The Multiobjective Minimum Spanning Tree (MO-MST) problem is a variant of the Minimum Spanning Tree problem, in which the costs associated with every edge of the input graph are vectors. In this paper, we design a new dynamic programming MO-MST algorithm. Dynamic programming for a MO-MST instance leads to the definition of an instance of the One-to-One Multiobjective Shortest Path (MOSP) problem and both instances have equivalent solution sets. The arising MOSP instance is defined on a so called transition graph. We study the original size of this graph in detail and reduce its size using cost dependent arc pruning criteria. To solve the MOSP instance on the reduced transition graph, we design the Implicit Graph Multiobjective Dijkstra Algorithm (IG-MDA), exploiting recent improvements on MOSP algorithms from the literature. All in all, the new IG-MDA outperforms the current state of the art on a big set of instances from the literature. Our code and results are publicly available.

In this paper we introduce a new algorithm for the k-Shortest Simple Paths (K-SSP) problem with an asymptotic running time matching the state of the art from the literature. It is based on a black-box algorithm due to Roditty and Zwick (2012) that solves at most 2k instances of the Second Shortest Simple Path (2-SSP) problem without specifying how this is done. We fill this gap using a novel approach: we turn the scalar 2-SSP into instances of the Biobjective Shortest Path problem. Our experiments on grid graphs and on road networks show that the new algorithm is very efficient in practice.