Refine
Document Type
- Article (2)
- ZIB-Report (1)
Language
- English (3)
Is part of the Bibliography
- no (3)
Institute
Wireless body area networks are wireless sensor networks whose adoption has recently emerged and spread in important healthcare applications, such as the remote monitoring of health conditions of patients. A major issue associated with the deployment of such networks is represented by energy consumption: in general, the batteries of the sensors cannot be easily replaced and recharged, so containing the usage of energy by a rational design of the network and of the routing is crucial. Another issue is represented by traffic uncertainty: body sensors may produce data at a variable rate that is not exactly known in advance, for example because the generation of data is event-driven. Neglecting traffic uncertainty may lead to wrong design and routing decisions, which may compromise the functionality of the network and have very bad effects on the health of the patients. In order to address these issues, in this work we propose the first robust optimization model for jointly optimizing the topology and the routing in body area networks under traffic uncertainty. Since the problem may result challenging even for a state-of-the-art optimization solver, we propose an original optimization algorithm that exploits suitable linear relaxations to guide a randomized fixing of the variables, supported by an exact large variable neighborhood search.
Experiments on realistic instances indicate that our algorithm performs better than a state-of-the-art solver, fast producing solutions associated with
improved optimality gaps.
Wireless body area networks are wireless sensor networks whose adoption has recently emerged and spread in important healthcare applications, such as the remote monitoring of health conditions of patients. A major issue associated with the deployment of such networks is represented by energy consumption: in general, the batteries of the sensors cannot be easily replaced and recharged, so containing the usage of energy by a rational design of the network and of the routing is crucial. Another issue is represented by traffic uncertainty: body sensors may produce data at a variable rate that is not exactly known in advance, for example because the generation of data is event-driven. Neglecting traffic uncertainty may lead to wrong design and routing decisions, which may compromise the functionality of the network and have very bad effects on the health of the patients. In order to address these issues, in this work we propose the first robust optimization model for jointly optimizing the topology and the routing in body area networks under traffic uncertainty. Since the problem may result challenging even for a state-of-the-art optimization solver, we propose an original optimization algorithm that exploits suitable linear relaxations to guide a randomized fixing of the variables, supported by an exact large variable neighborhood search. Experiments on realistic instances indicate that our algorithm performs better than a state-of-the-art solver, fast producing solutions associated with improved optimality gaps.
This study investigates how to model and solve the problem of optimally designing FTTx telecommunications access networks integrating wired and wireless technologies, while taking into account the uncertainty of wireless signal propagation. We propose an original robust optimization model for the related robust 3-architecture Connected Facility Location problem, which includes additional variables and constraints to model wireless signal coverage represented through signal-to-interference ratios. Since the resulting robust problem can prove very challenging even for a modern state-of-the art optimization solver, we propose to solve it by an original primal heuristic that combines a probabilistic variable fixing procedure, guided by peculiar Linear Programming relaxations, with a Mixed Integer Programming heuristic, based on an exact very large neighborhood search. A numerical study carried out on a set of realistic instances show that our heuristic can find solutions of much higher quality than a state-of-the-art solver.