### Refine

#### Year of publication

#### Document Type

- ZIB-Report (10)
- In Proceedings (8)
- Article (3)
- Book chapter (1)
- Doctoral Thesis (1)
- Master's Thesis (1)

#### Keywords

- online optimization (5)
- Online-Optimierung (4)
- Aufzugssteuerung (2)
- Markov decision problem (2)
- column generation (2)
- elevator control (2)
- linear programming (2)
- Aufzugsgruppensteuerung (1)
- Blocking Probability (1)
- Dispatching von Fahrzeugen (1)

#### Institute

The Dynamic Multi-Period Routing Problem DMPRP introduced by Angelelli et al. gives a model for a two-stage online-offline routing problem. At the beginning of each time period a set of customers becomes known. The customers need to be served either in the current time period or in the following. Postponed customers have to be served in the next time period. The decision whether to postpone a customer has to be done online. At the end of each time period, an optimal tour for the customers assigned to this period has to be computed and this computation can be done offline. The objective of the problem is to minimize the distance traveled over all planning periods assuming optimal routes for the customers selected in each period. We provide the first randomized online algorithms for the DMPRP which beat the known lower bounds for deterministic algorithms. For the special case of two planning periods we provide lower bounds on the competitive ratio of any randomized online algorithm against the oblivious adversary. We identify a randomized algorithm that achieves the optimal competitive ratio of $\frac{1+\sqrt{2}}{2}$ for two time periods on the real line. For three time periods, we give a randomized algorithm that is strictly better than any deterministic algorithm.

This extended abstract is about algorithms for controlling elevator systems employing destination hall calls, i.e. the passenger provides his destination floor when calling an elevator. We present the first exact algorithm for controlling a group of elevators and report on simulation results indicating that destination hall call systems outperform conventional systems.

Dynamic Routing Algorithms in Transparent Optical Networks An Experimental Study Based on Real Data
(2002)

Today's telecommunication networks are configured statically. Whenever a connection is established, the customer has permanent access to it. However, it is observed that usually the connection is not used continuously. At this point, dynamic provisioning could increase the utilization of network resources. WDM based Optical Transport Networks (OTNs) will shortly allow for fast dynamic network reconfiguration. This enables optical broadband leased line services on demand. Since service requests competing for network resources may lead to service blocking, it is vital to use appropriate strategies for routing and wavelength assignment in transparent optical networks. We simulate the service blocking probabilities of various dynamic algorithms for this problem using a well-founded traffic model for two realistic networks. One of the algorithms using shortest path routings performs best on all instances. Surprisingly, the tie-breaking rule between equally short paths in different wavelengths decides between success or failure.

Many online problems encountered in real-life involve a two-stage decision process: upon arrival of a new request, an irrevocable first-stage decision (the assignment of a specific resource to the request) must be made immediately, while in a second stage process, certain ``subinstances'' (that is, the instances of all requests assigned to a particular resource) can be solved to optimality (offline) later. We introduce the novel concept of an \emph{Online Target Date Assignment Problem} (\textsc{OnlineTDAP}) as a general framework for online problems with this nature. Requests for the \textsc{OnlineTDAP} become known at certain dates. An online algorithm has to assign a target date to each request, specifying on which date the request should be processed (e.\,g., an appointment with a customer for a washing machine repair). The cost at a target date is given by the \emph{downstream cost}, the optimal cost of processing all requests at that date w.\,r.\,t.\ some fixed downstream offline optimization problem (e.\,g., the cost of an optimal dispatch for service technicians). We provide general competitive algorithms for the \textsc{OnlineTDAP} independently of the particular downstream problem, when the overall objective is to minimize either the sum or the maximum of all downstream costs. As the first basic examples, we analyze the competitive ratios of our algorithms for the par ticular academic downstream problems of bin-packing, nonpreemptive scheduling on identical parallel machines, and routing a traveling salesman.

The standard computational methods for computing the optimal value functions of Markov Decision Problems (MDP) require the exploration of the entire state space. This is practically infeasible for applications with huge numbers of states as they arise, e.\,g., from modeling the decisions in online optimization problems by MDPs. Exploiting column generation techniques, we propose and apply an LP-based method to determine an $\varepsilon$-approximation of the optimal value function at a given state by inspecting only states in a small neighborhood. In the context of online optimization problems, we use these methods in order to evaluate the quality of concrete policies with respect to given initial states. Moreover, the tools can also be used to obtain evidence of the impact of single decisions. This way, they can be utilized in the design of policies.

Ein gemischt-ganzzahliges lineares Optimierungsmodell für ein Laserschweißproblem im Karosseriebau
(2006)

Wir beschäftigen uns mit dem Problem der Betriebsplanung von Laserschweißrobotern im Karosseriebau. Gegeben ist eine Menge von Schweißnähten, die innerhalb einer Fertigungszelle an einem Karosserieteil gefertigt werden müssen. Die Schweißnähte werden durch mehrere parallel betriebene Roboter bearbeitet. Die Aufgabe besteht darin, für jeden Roboter eine Reihenfolge und eine zeitliche Koordinierung seiner Bewegungen zu finden, so dass alle Schweißnähte innerhalb der Taktzeit der Fertigungszelle bearbeitet werden und so wenig Laserquellen wie möglich eingesetzt werden. Dabei müssen einige Nebenbedingungen berücksichtigt werden. Für dieses spezielle Schweißproblem haben wir eine Formulierung als gemischt-ganzzahliges lineares Programm entwickelt, welches sich für die untersuchten praktischen Fälle sehr schnell lösen lässt.

Algorithmic control of elevator systems has been studied for a long time. More recently, a new paradigm for elevator control has emerged. In destination call systems, the passenger specifies not only the direction of his ride, but the destination floor. Such a destination call system is very interesting from an optimization point of view, since more information is available earlier, which should allow improved planning. However, the real-world destination call system envisioned by our industry partner requires that each destination call (i.e. passenger) is assigned to a serving elevator immediately. This early assignment restricts the potential gained from the destination information. Another aspect is that there is no way to specify the destination floor in the cabin. Therefore, the elevator has to stop on every destination floor of an assigned call, although the passenger may not have boarded the cabin, e.g. due to insufficient capacity. In this paper we introduce a new destination call control algorithm suited to this setting. Since the control algorithm for an entire elevator group has to run on embedded microprocessors, computing resources are very scarce. Since exact optimization is not feasible on such hardware, the algorithm is an insertion heuristic using a non-trivial data structure to maintain a set of tours. To assess the performance of our algorithm, we compare it to similar and more powerful algorithms by simulation. We also compare to algorithms for a conventional system and with a more idealized destination call system. This gives an indication of the relative potentials of these systems. In particular, we assess how the above real-world restrictions influence performance. The algorithm introduced has been implemented by our industry partner for real-world use.

In \emph{classical optimization} it is assumed that full information about the problem to be solved is given. This, in particular, includes that all data are at hand. The real world may not be so nice'' to optimizers. Some problem constraints may not be known, the data may be corrupted, or some data may not be available at the moments when decisions have to be made. The last issue is the subject of \emph{online optimization} which will be addressed here. We explain some theory that has been developed to cope with such situations and provide examples from practice where unavailable information is not the result of bad data handling but an inevitable phenomenon.

Starting with the description of the Traveling Salesmen Problem formulation as given by van Vyve and Wolsey in the article Approximate extended formulations'', we investigate the effects of small variations onto the performance of contemporary mixed integer programming solvers. We will show that even minor changes in the formulation of the model can result in performance difference of more than a factor of 1000. As the results show it is not obvious which changes will result in performance improvements and which not.