Refine
Year of publication
- 2014 (2)
Document Type
- Article (1)
- ZIB-Report (1)
Language
- German (2)
Is part of the Bibliography
- no (2)
Keywords
- Beton (1)
- Bildverarbeitung (1)
- Computertomografie (1)
- Korrosionserkennung (1)
- computed tomography (1)
- concrete (1)
- corrosiondetection (1)
- image processing (1)
Institute
Kurzfassung. Durch die Alkalität des Betons wird Betonstahl dauerhaft vor
Korrosion geschützt. Infolge von Chlorideintrag kann dieser Schutz nicht länger
aufrechterhalten werden und führt zu Lochkorrosion. Die zerstörungsfreie Prüfung
von Stahlbetonproben mit 3D-CT bietet die Möglichkeit, eine Probe mehrfach
gezielt vorzuschädigen und den Korrosionsfortschritt zu untersuchen. Zur Quantifizierung
des Schädigungsgrades müssen die bei dieser Untersuchung anfallenden
großen Bilddaten mit Bildverarbeitungsmethoden ausgewertet werden. Ein wesentlicher
Schritt dabei ist die Segmentierung der Bilddaten, bei der zwischen Korrosionsprodukt
(Rost), Betonstahl (BSt), Beton, Rissen, Poren und Umgebung
unterschieden werden muss. Diese Segmentierung bildet die Grundlage für statistische
Untersuchungen des Schädigungsfortschritts. Hierbei sind die Änderung
der BSt-Geometrie, die Zunahme von Korrosionsprodukten und deren Veränderung
über die Zeit sowie ihrer räumlichen Verteilung in der Probe von Interesse. Aufgrund
der Größe der CT-Bilddaten ist eine manuelle Segmentierung nicht durchführbar,
so dass automatische Verfahren unabdingbar sind. Dabei ist insbesondere
die Segmentierung der Korrosionsprodukte in den Bilddaten ein schwieriges
Problem. Allein aufgrund der Grauwerte ist eine Zuordnung nahezu unmöglich,
denn die Grauwerte von Beton und Korrosionsprodukt unterscheiden sich kaum.
Eine formbasierte Suche ist nicht offensichtlich, da die Korrosionsprodukte in Beton
diffuse Formen haben.
Allerdings lässt sich Vorwissen über die Ausbreitung der Korrosionsprodukte
nutzen. Sie bilden sich in räumlicher Nähe des BSt (in Bereichen vorheriger
Volumenabnahme des BSt), entlang von Rissen sowie in Porenräumen, die direkt
am BSt und in dessen Nahbereich liegen. Davon ausgehend wird vor der
Korrosionsprodukterkennung zunächst eine BSt-Volumen-, Riss- und Porenerkennung
durchgeführt. Dieser in der Arbeit näher beschriebene Schritt erlaubt es, halbautomatisch
Startpunkte (Seed Points) für die Korrosionsprodukterkennung zu
finden. Weiterhin werden verschiedene in der Bildverarbeitung bekannte
Algorithmen auf ihre Eignung untersucht werden.