Refine
Year of publication
Document Type
- ZIB-Report (47)
- Article (39)
- In Proceedings (29)
- Master's Thesis (2)
- Doctoral Thesis (1)
Is part of the Bibliography
- no (118)
Keywords
- linear programming (5)
- MINLP (4)
- parallelization (4)
- Linear programming (3)
- branch-and-cut (3)
- energy system models (3)
- mixed-integer nonlinear programming (3)
- mixed-integer semidefinite programming (3)
- nonconvex (3)
- propagation (3)
Institute
Since the initial application of mathematical optimisation methods to mine planning in 1965, the Lerchs-Grossmann algorithm for computing the ultimate pit limit, operations researchers have worked on a variety of challenging problems in the area of open pit mining. This thesis focuses on the open pit mining production scheduling problem: Given the discretisation of an orebody as a block model, determine the sequence in which the blocks should be removed from the pit, over the lifespan of the mine, such that the net present value of the mining operation is maximised. In practise, when some material has been removed from the pit, it must be processed further in order to extract the valuable elements contained therein. If the concentration of valuable elements is not sufficiently high, the material is discarded as waste or stockpiled. Realistically-sized block models can contain hundreds of thousands of blocks. A common approach to render these problem instances computationally tractable is the aggregation of blocks to larger scheduling units. The thrust of this thesis is the investigation of a new mixed-integer programming formulation for the open pit mining production scheduling problem, which allows for processing decisions to be made at block level, while the actual mining schedule is still computed at aggregate level. A drawback of this model in its full form is the large number of additional variables needed to model the processing decisions. One main result of this thesis shows how these processing variables can be aggregated efficiently to reduce the problem size significantly, while practically incurring no loss in net present value. The second focus is on the application of lagrangean relaxation to the resource constraints. Using a result of Möhring et al. (2003) for project scheduling, the lagrangean relaxation can be solved efficiently via minimum cut computations in a weighted digraph. Experiments with a bundle algorithm implementation by Helmberg showed how the lagrangean dual can be solved within a small fraction of the time required by standard linear programming algorithms, while yielding practically the same dual bound. Finally, several problem-specific heuristics are presented together with computational results: two greedy sub-MIP start heuristics and a large neighbourhood search heuristic. A combination of a lagrangean-based start heuristic followed by a large neighbourhood search proved to be effective in generating solutions with objective values within a 0.05% gap of the optimum.
In this paper we investigate the performance of several out-of-the box solvers for mixed-integer quadratically constrained programmes (MIQCPs) on an open pit mine production scheduling problem with mixing constraints. We compare the solvers BARON, Couenne, SBB, and SCIP to a problem-specific algorithm on two different MIQCP formulations. The computational results presented show that general-purpose solvers with no particular knowledge of problem structure are able to nearly match the performance of a hand-crafted algorithm.
MIPLIB 2010
(2010)
This paper reports on the fifth version of the Mixed Integer Programming Library.
The MIPLIB 2010 is the first MIPLIB release that has been assembled by a large group from academia and from industry, all of whom work in integer programming. There was mutual consent that the concept of the library had to be expanded in order to fulfill the needs of the community. The new version comprises 361 instances sorted into several groups.
This includes the main benchmark test set of 87 instances, which
are all solvable by today's codes, and also the challenge test set with 164 instances, many of which are currently unsolved.
For the first time, we include scripts to run automated tests in a predefined way. Further, there is a solution checker to
test the accuracy of provided solutions using exact arithmetic.
Undercover Branching
(2013)
In this paper, we present a new branching strategy for nonconvex MINLP that aims at driving the created subproblems towards linearity. It exploits the structure of a minimum cover of an MINLP, a smallest set of variables that, when fixed, render the remaining system linear: whenever possible, branching candidates in the cover are preferred.
Unlike most branching strategies for MINLP, Undercover branching is not an extension of an existing MIP branching rule. It explicitly regards the nonlinearity of the problem while branching on integer variables with a fractional relaxation solution. Undercover branching can be naturally combined with any variable-based branching rule.
We present computational results on a test set of general MINLPs from MINLPLib, using the new strategy in combination with reliability branching and pseudocost branching. The computational cost of Undercover branching itself proves negligible. While it turns out that it can influence the variable selection only on a smaller set of instances, for those that are affected, significant improvements in performance are achieved.
We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programming (MINLP) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a minimal set of variables that need to be fixed in order to linearize each constraint, a so-called cover. Subsequently, these variables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear relaxation. We apply domain propagation and conflict analysis to try to avoid infeasibilities and learn from them, respectively. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem.
We present computational results on a test set of mixed-integer quadratically constrained programs (MIQCPs) and general MINLPs from MINLPLib. It turns out that the majority of these instances allow for small covers. Although general in nature, the heuristic appears most promising for MIQCPs, and complements nicely with existing root node heuristics in different state-of-the-art solvers.
In this paper, we describe a method to enhance the FTRAN and BTRAN operations in the revised simplex algorithm by using a reduced basis matrix defined by basic columns and nonbasic rows. This submatrix of the standard basis matrix is potentially much smaller, but may change its dimension dynamically from iteration to iteration.
For the classical product form update ("eta update"), the idea has been noted already by Zoutendijk, but only preliminarily tested by Powell in the early 1970s. We extend these ideas to Forrest-Tomlin type update formulas for an LU factorization of the reduced basis matrix, which are suited for efficient implementation within a state-of-the-art simplex solver. The computational advantages of the proposed method apply to pure LP solving as well as to LP-based branch-and-cut algorithms. It can easily be integrated into existing simplex codes.
Optimization-based bound tightening (OBBT) is a domain reduction technique commonly used in nonconvex mixed-integer nonlinear programming that solves a sequence of auxiliary linear programs. Each variable is minimized and maximized to obtain the tightest bounds valid for a global linear relaxation. This paper shows how the dual solutions of the auxiliary linear programs can be used to learn what we call Lagrangian variable bound constraints. These are linear inequalities that explain OBBT's domain reductions in terms of the bounds on other variables and the objective value of the incumbent solution. Within a spatial branch-and-bound algorithm, they can be learnt a priori (during OBBT at the root node) and propagated within the search tree at very low computational cost. Experiments with an implementation inside the MINLP solver SCIP show that this reduces the number of branch-and-bound nodes and speeds up solution times.
We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on a linear relaxation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances.